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. Let H denote the Heaviside function
1l 1 w0
H(x).—{ 0 : z<0.
Sketch a graph of the following functions, stating whether each is even or odd:
() H(z)- H{z-1),
(ii) H(z—-1/2) - H(z+1/2),
(ili) z? [H(z - 1/2) — H(z +1/2)].

Sketch a graph of the following functions, giving a precise domain and range in each
case: :

(iv) z/(z+ 1),
(v) z?sin(1/z).
Finally, evaluate the limit

tan(pz)
z—0 tan(gz)

. Consider the function
f(@) = (&* - 1)%

Find the stationary points of f and provide the details of the calculation that deter-
mines their nature. Hence draw a sketch of f on the interval [—2, 2], noting all local
and global extrema and any other important features.

Use the information contained in your first graph to sketch a graph of the function
e @ on [-2,2.

PLEASE TURN OVER
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3. A curve I' is defined parametrically by the two functions

z(t) = 1 + cost, y(t) =t + sint.

Find dz/dt and dy/dt and hence give the length of I' between the points £ = 0
and t = 1/10. Show that 1/5 units is an approximation of this length, but that
2399/12000 units is a better approximation.

4. (i)

(i)

Integrate e® cos z, omitting the arbitrary constant of integration.

d . . 3 .
You are given that — sinz = cosz and sin~! z denotes the inverse function to

ginz on a certain domain. Use these two pieces of information to deduce that

for all z in that domain. You must clearly state any properties of trigonometric
functions that you use.

Use a power series representation of that is convergent for -1 <z <1

to deduce a power series representation of In |1 —z | that converges for

-1<z< 1.

Hence deduce that

="

n

In(1/2) = f

stating clearly any convergence tests that you use.
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5. Using the ratio test for convergence, or otherwise, deduce for what values of z each
of the following series converges :

RS ; _ (2"

® "Z;: Gn With an = Ty
2;“

(n)nz_:lbn with b, = BT

(iif) i cn Wwith ¢, = (z(z—1))"/e".

n=1

Use the integral test to find numbers m and M such that
o0
m< Ynd<M
n=1

6. You are given the integral

eka:
/ eFdr = g + Const
which holds for all complex k and real z. Use this to deduce the values of

T 0
gy = e®cosnzdr and bn=/ e” sinnzdz
—1T -
in terms of sinh 7 = (™ — e™™) where n is a fixed integer.
The complex Fourier series representation of the real 2x-periodic function f(z) on
(—m, ) is given by
o : 1 pr .
fl@) = co+2 Z Re(cne™) with ¢, = —f flz)e ™ dzs.
= 27 J_»
n=1
Evaluate the coefficients ¢, when f(z) coincides with e® on (—m,7) and hence
evaluate

i": 1
n=1 1+n2.

Hint: Use the following version of Parseval’s theorem
1 ™ =

— [ f@Pde = of + 23 |eal?.
- n=1

to first evaluate
i 1+n?
n=1 (1 + n2) &

PLEASE TURN OVER
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If z= f(s) where s = E;y show that

Oz 0z
2-— —_ — =
T 3z By 0.

(ii) The height of a cylindrical tube with radius r and volume V is found by the

formula V = #wr2h. Given that the percentage errors in the measurements of
r and V are at most 0.4% and 0.6%, respectively, give an upper bound on the
percentage error committed in the calculation of the height.

Consider the equation
22—z —6=0.

Show that following are iteration schemes for computing the two solutions of
this equation:

(&) T+l = f(zn)s f(z) =z +6,

(b) Tns1=h(za), )=,
(€) Znt1=g(za), g(z)=2*-6,
Show that iteration scheme (a) converges to the positive solution of the equa-

tion, iteration scheme (b) converges to the negative solution and that iteration
scheme (c) does not converge to any of the solutions.

Do not attempt to carry out the iteration in any of these cases.

Show that the equation
z2 +z—cosz=0

has a unique solution for z € [0, 7/2]. Write down the Newton-Raphson scheme
for computing this solution. Starting at g = 0.5, compute the first two Newton-
Raphson iterates.
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9. (i) Find the general solution to the differential equation

dy 4_4
d.'t:+:1:y_m

using the integrating factor method, or otherwise.
(ii) Show that the differential equation
dy

dz
is exact and obtain its general solution in implicit form.

(zcosy — 2y) + (z + siny) =0

10. Consider the function f defined on [, )
flx) = {9: : S T <M,

that is periodically extended to all real z. Find a real Fourier series for f and use
Parseval’s theorem to evaluate

To what values does the Fourier series converge at £ = —7 and z = +77?

Use either the real form of Parseval’s theorem given in the formulae sheet or the
complez form given in Q6.

END OF PAPER
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SOLUTIONS

1. (a) neither even nor odd (b) even (c) even (d) domainis {z e R: z #
—1} and range {z € R :  # 1} (e) domain and range is R, although

{z € R: z # 0} is a reasonable domain with the same range. E ;
-1 0 1
. Lol
~0.257]
G has—E
5 bred
. 2 |3
(4) (W E
=10 -:'l.ﬂ 0o as 10
Lt bt iga by Ly eyl

?IIIJ?EIIDJ

CS
\
X

o =57<2_

In order to evaluate the limit [noting L'h8pital’s rule would also receive

fulls marks.]
tan(pz)

o tan(gz)’

AL Cleoker
L ML
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write this as
which equals

or
L]

Seller

QAL

Q . Reorduuc~R

P lim
q z—0

sin(pz) cos(gz)
@—0 cos(pz) sin(gz)’

P sin(pz) gz cos(gz)
g z—0 pz cos(pz) sin(gz) ’

sin(pzx) lim cos(pz) iy 92

px  z—0 cos(gz) z—0 sin(gz)

P
q

G Ruwlich)



2. If f(z) = (z® — 1)? then f is an even function

df _ .. 2
pm =2(z*—1) -2z

and
&ef
dz?
Hence f'(z) = 0 when z = 1,z = 0 and

=2(z2-1)-2+4z - 2z.

d* f

—= =8>0
d’.ﬂz z==+1

so that ¢ = %1 are both local minima. At z =0, f’(0) = —4 < 0 so
that £ = 0 is a local maximum. 10
At the boundaries z = +2 we have f(£2) = (4—1)2 =9 and f(0) = 1 so
that global maxima are obtained at z = %2, global minima are attained
at & =155 fz) = 0for all 2.

Now e~f® is also even and has minima where f has maxima and vice
versa as shown in the plot below.

-+
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3. Using the information given we have

dr dy

5= sin(t), I 1 + cos(t),

and so the required length is

i [ ((8)  (8)) e [ e+ e

1/10 s 1/10 o
= / (sin®(t) + cos®(t) + 1+ 2cos(t)) '~ dt = / (2 + 2cos(t)) 2 dt
0 0

1/10 )
= \/E/ (1 + cos(t))? dt [C
0

but cos(t) = cos(t/2 + t/2) = cos?(t/2) — sin®(t/2) = 2cos?(t/2) — 1
and so

1/10

£= \/5/;;10 (2 COSQ(UZ))UE dt = 2/01/10 |cos(t/2)|dt = 2/0 cos(t/2)dt

on this region. Hence
1/10 S
£=2 f cos(t/2)dt = 4[sin(t/2)]Y™° = 4sin(1/20). =
0

The first term of the Maclaurin series expansion of the sine function gives
sin(z) ~ z and so 4/20 = 1/5 is a first-order approximation. A better
approximation comes about from using

3

s

sin(z) ~z — !

o

)3

so that 4sin(1/20) ~ 4 (1/20 - ) = 1 — o — 2399/12000. 5

I
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4. (a) This answer uses [ e®cos(z)dz = Re ([ e*e*®dz) (although integra-
tion by parts is also acceptable and will receive full marks). Now

| Gl
Re (/ ezewdm) L"‘J.{/(bﬂ”b
) (1+i)z (14+4)z %
:Re(/e(”’)”dm):}%e(e ,)+C'=Re(r3 — X - t.)-l—c
141 1+ 1—1

e(l—i—i]x &% )
= Re 5 (1—1) +C=?Re(e‘m(l—i))+0

T

= %(cos(x) +sin(z)) + C. é

Here C denotes an arbitrary real constant.

(b) The required derivative can be obtained from
sin"(sin(z)) = =

for all z in a suitable set. Differentiating this gives

Eg; (sin™1) (Sin(:c))%(sin(m)) ']

and so

%(Sin_l)(sin(m)) cos(z) = 1

;;(sin_l)(sin(.r)) = 1/ cos(z).

Using sin?(z) + cos?(x) = 1 for all z on setting y = sin(z) we obtain
cos(z) = %+/1 —y? and so the domain in the question can be chosen

such that d é
— (™)) = VI

(c) Using
1

L=

1+z+22+..=
that converges for all |z| < 1 we can integrate this term-by-term to give
2 3

o0 n
z T I
=i e .=0C L,
Ctz+5+5+ +n§_1 .

e e
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[[», é.cb\l- \ which equals .
/i"_—m‘dit - —]_Ill]. —:Bl,

for some constant of integration C. Setting z = 0 into this summation
gives C = 0 as In(1) = 0 and so for |z| < 1 we have

o0 x.n

R_E_I:EZ“NH—?:], ~
\) b k L Lhe) Qe En (o
‘1uw ¥ = -\ U™ a b oul Senej X[

b SN Y
A 9 = % \ H:;L L
W

no
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5. (a) We compute lim,_, a;n*“l
) 2p\ntl
lim |22 = lim (22) X il
n—00 | Qn n—oo | (n+ 1)(n+2) (2z)"
2
= lim |—2 _ xn|=|2z] lim |——| = [22].
n—o0 (n+ 2) n—o00 |1 + 2

The limit ratio test now tells us that the given series converges for |z| <
1/2 and diverges for |z| > 1/2. On setting z = 1/2 we see that

;?;1 %:—Hj converges by a comparison with ) °° | —5 which has been
shown to converge in lectures using the integral test. Setting z = —1/2
gives the same conclusion (possibly using the Alternating Series Test) and
so the region of convergence is —1/2 <z <1/2.

(b)

i An+1 - $2(n'+l) (3”) !
im = X
n—co | anp n—oo [3(n+1)! At
x? (3n)
= lim |—— x (3n) 2 lim |——
A 3w < B0 ‘ It . 3(n+1)"
which equals
1
2
=<l
R R gy T g
Hence the series converges for all real z.
(c) Computing limy_, [ 22| gives
n+1 n i
lim an41 (.‘.B l)) > e _ l‘(:l! 1) .
n—oo | Qp n—»co entl (:B(:I: = 1))“ €

The ratio test gives convergence for |z(z — 1)| < e and divergence for
|z(z—1)| > e, where the last non-strict inequality is obtained from inspec-
tion of convergence properties at the boundaries of the region specified
by the ratio test.

In order to find m and M such that m < Z:il n~3 < M clearly the first
term m = 1 works, as does the sum of the first two termsm =1+1/8 =
9/8. To find a suitable M note that

[=¢]

Zn_3 _/ x~3dz = [—%x_z] =35

n=2 1

Lo

oo -

5 sean
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5 . (&out\ from the integral test and so M = 1/2+ 1 = 3/2 is an upper bound on
the sum.

[An M that is proposed as an upper bound but with no rationale will
receive zero marks, even if it is an upper bound. Careful use of the 5
comparison test, comparing with a series like 3" n~=2 should receive full

marks.] . \
b&& e
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6. To compute the sequences (a,) and (by) let us compute

™ 5 ;. ; elintl)z i
Cion :=/ ememzd:r=f et l)zgy — TTn a

(in+1)x(1 - e ) 7 1 _ -
- € mn - in+1)x .
_{ 1+n2 ] T 1+4n2 [e( +)(1ﬂn)]_

T

1 [(e“""’l}’r B e-(mH}ar) (1= a‘n)}

T 1+n?
1 _ .
= [(=1)™ (€™ —e™™) (1 —in)]
_ o (=D s )™ ;
= 2sinh() 1T + 2i sinh(7) T an + iby.

From the above computation we have

—1\n inh(x) (—1)"
By 52 % i :3@2 (e"—e ™) (1—1in) = > ﬂ_( ) 1( :312 (1—in)
and so ) n
_ sinh(m) (-1) (1+ in). |0

T 1+n2
Using the given version of Parseval’s formula

17 e, 2 = 2 _ (sioh(m))* o~ 1472
271'/ e dm—co+2ZICn| —( = 1+2;(1+n2)2

= n=1

and

-— edr = —

T 1 [1 ,,]" _ sinh(27)
2r J_ . 27 _Tr_—

we finally obtain
: g 2 o0 2
sinh(27) _ sinh(m) 142 Z l1+n
2 T (14 n?)?

( msinh(2r) 1) ' g

2(sinh(7))?

and so

[M]8
o
a4
f_,\jzs

|

SN
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Lee (2) @

- +
(i) Let u= Z2£. We have that

o: _ dfou
0r  dulz
_ _14
- 22du
Similarly
0z  df Ou
8y  dudy
_ _1d
 y2du’
Consequently
0z 0z df df
20% 392 @ . of
T oz yay du+du . -LO

(ii) We have that
8V = 2nrhér + mridh.

Hence

14 14 v
2r o

r h'

u

oV 2nrhér + wr26h

Consequently,

sh _ 2r &V

R r 7
Thus

| [r
h T

LV
v
= 2x0.004 + 0.006 = 0.014.

10
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8. (i) The equation can be rewritten in the form z® = z + 6 from which
the first scheme follows. Similarly we can write the equation in the
form z(z — 1) = 6 and this leads to the second scheme. Finally, we
can write £ = 22 — 6 which leads to the third scheme.

The two roots of the equation are r; = 3 and 7 = —2. The

first scheme clearly produces only positive numbers. Furthermore,

|f'(r1)| < 1 and hence the first scheme converges to the positive

root. For the second scheme we have that |h/(r1)| > 1, |A'(r2)| < 1

which shows convergence to the negative root. For the the third

scheme we have that |¢'(r1)| > 1, |¢'(r2)| > 1 and consequently the 4 O
scheme does not converge.

(ii) Let f(z) = z2+z—cosz. We have that f'(z) = 2z+1+sinz > 0in
[0,7/2] and, hence, the function is strictly increasing. Furthermore,
£(0) = —1 < 0 and f(x/2) = 72/4+ /2 > 0. Consequently, there
exists a unique root in the interval [0,7/2].

We have f’(z) = 2z + 1 + sinz and consequently the Newton—
Raphson scheme is

xi + Ty — COS Ty,
2%, +14+sinz,

Tnt+l = Tn

10

Let now zg = 0.5. The first iteration gives £; = 0.5514565. The

second iteration gives z» = (.550010.
Stoni far o
. Sheet
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9. (i) The equation is of the form y'(z) + p(z)y = g(z) with p(z) = 4/z
and g(z) = z*. The integrating factor is
I(I) o efp(z)dz = elnz" . I

Consequently

Ya) = @) +17) [ Teals)ds

e T
= —4+:r_4/ s8ds

T
_® z°
N
where ¢ is an arbitrary constant. ] O

(i) The equation is of the form
dy
N(z,y)— + M(z,y) =0
(z,9) 5+ M(z,y)
with N(z,y) = zcosy — 2y and M(z,y) = = + siny. We check

that
OM 0N
By oz
and the equation is exact. The solution of the equation is of the
form z(z,y(z)) = c where ¢ is an arbitrary constant and

0z 0z
— = d — =N.
5z M an oy

From the first equation we get that

= cos Y,

1
2(z,y) = 52" + zsiny + h(y),

where h(y) is an arbitrary constant. We differentiate the above
formula with respect to y and equate the result to N(z,y) to obtain

92 _ zcosy + R (y) = zcosy — 2y.
Oy
From this we conclude that
hy) = -y*
Consequently, the solution of the differential equation is defined im- j
plicitly through the formula D

1
5272 + zsiny — y? = c.

R <




10. Using the complex version of the Fourier series given in lectures (and in
the question)

f(z) =co + Z 2Re(cpe'™)

n=1

where ¢, = 3 [ f(z)e"™"%dz we find

1 T ) 1 —ing ] T ,—inz
Cp = — e ¥y = — s - +/ e. dx
2T 2w —-in |_. —r N

-

1 fze™® i —inm inm i ni
-—ﬂ[ o } —%[we + e ] —Ecos(mr)—(—l) .

Also ¢p = % J7_zdz =0 and hence

oo ® oo n 3
fle)= Z 2 nl) (ie™) = Z . sin(nz). ( O
n=1 n=1

But the complex form of Parseval's theorem states that

i I § = =L 1
| 1@ =2l =23
n= n=

and so -
1 1 1 ["
Z — f(z)zdx = — ?dz
n?  4n 4 J
n=1
1L [7 m 2 g”
= — T d.’!] = =T 6
27 Jo 2m -3 /
Putting £ = —7 into the Fourier series shows that it converges to the 9—
value 0, as it also does at z = +m. This can also be deduced from the

form of the jump discontinuity of f at these points.
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