# UNIVERSITY OF LONDON

# **B.ENG. AND M.ENG. EXAMINATIONS 2001**

For Internal Students of the Imperial College of Science, Technology and Medicine This paper is also taken for the relevant examination for the Associateship.

### PART I : MATHEMATICS 1

Wednesday 6th June 2001 10.00 am - 1.00 pm

Answer EIGHT questions.

[Before starting, please make sure that the paper is complete; there should be 6 pages, with a total of 10 questions. Ask the invigilator for a replacement if your copy is faulty.]

#### Copyright of the University of London 2001

1. Let

$$f(x) = \frac{x+3}{2x+1}$$
.

- (i) Find the inverse function  $f^{-1}(x)$  of f(x).
- (ii) Write f(x) as the sum of an even and an odd function.
- (iii) Find all solutions of the equation

$$f(f(x)) = 0.$$

(iv) Find all solutions of the equation

$$\frac{1}{f(\cos\theta)} = 0.$$

2. Consider the curve defined by the equation

$$y^2 = x^2 - \frac{x^4}{4}$$
.

(i) Find the coordinates of all stationary points of the curve.

(ii) Find the coordinates of all points at which  $\frac{dy}{dx}$  becomes infinite.

(iii) Sketch the curve.

#### PLEASE TURN OVER

3. Find  $\frac{dy}{dx}$  in each of the following cases.

In case (v) you may express your answer in terms of x and y.

(i) 
$$y = e^{\sin x}$$
.

(ii) 
$$y = \ln(\ln x)$$
.

(iii) 
$$y = x^2 e^x \cos x$$

(iv) 
$$y = x^{\ln x}$$
.

- $(\mathbf{v}) \qquad \qquad xy + \ln(xy) = 1.$
- 4. (i) Show that if  $y = (\sin^{-1} x)^2$ , then

$$(1-x^2)^{1/2} \frac{dy}{dx} = 2 \sin^{-1} x.$$

Hence or otherwise show that y satisfies the equation

$$(1-x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} - 2 = 0.$$

(ii) Find the  $n^{\text{th}}$  derivatives of the functions  $f(x) = e^{3x}$  and  $h(x) = x^2 e^{3x}$ .

(iii) Two sides of a triangle are of unit length and meet at angle  $\theta$ . The length of the third side is given by  $l(\theta) = (2 - 2\cos\theta)^{1/2}$ . Find  $dl/d\theta$ .

By using the formula

$$rac{dl}{d heta} \;=\; \lim_{h
ightarrow 0} \; rac{l( heta+h) \;-\; l( heta)}{h} \;,$$

find the approximate change in l if  $\theta$  changes from  $\frac{\pi}{3}$  to  $\frac{\pi}{3} + 0.01$  (in radians).

5. Evaluate the following limits:

(i) 
$$\lim_{x \to 5} \frac{3 - \sqrt{x+4}}{x-5};$$

(ii) 
$$\lim_{x \to 0} x^{-3} \tan^3(3x)$$

(iii) 
$$\lim_{x \to 0} \frac{\ln(1+3x^2)}{1+x-e^x};$$

(iv) 
$$\lim_{x \to \pi/3} \frac{1 + \cos 3x}{\sqrt{3} - \tan x} .$$

# 6. Evaluate the following integrals :

(i) 
$$\int_{1}^{e} \frac{(\ln x)^2}{x} dx;$$

(ii) 
$$\int_0^1 \sqrt{1-x^2} \, dx$$
;

(iii) 
$$\int \frac{x \, dx}{(1+x^2)^2} ;$$

(iv) 
$$\int \frac{x^2 dx}{(1+x^2)^2}$$
.

## PLEASE TURN OVER

7. (i) Express the function

$$\frac{2x}{\left(x^2+1\right)\left(x-1\right)}$$

in partial fraction form, and hence find

$$\int \frac{2x \, dx}{(x^2 + 1) \, (x - 1)} \; .$$

(ii) Let

$$I_n = \int_0^\pi \sin^n x \, dx.$$

By integrating by parts, prove that for  $n \ge 2$ ,

$$I_n = \frac{n-1}{n} I_{n-2}.$$

Hence find

$$\int_0^\pi \sin^6 x \, dx \, .$$

8. (i) Find which of the following series converge:

(a) 
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$
; (b)  $\sum_{n=1}^{\infty} \frac{n!}{2^n}$ ; (c)  $\sum_{n=1}^{\infty} \frac{n}{n+10}$ .

(ii) Find the radius of convergence of the power series

$$\sum_{n=0}^{\infty} (n+1) x^n.$$

(iii) Find  $\frac{d^n}{dx^n} (1-x)^{-2}$  and hence show that the Maclaurin expansion of  $(1-x)^{-2}$  is given by the series in part (ii).

9. (i) Express each of the following in the form a + ib :

(a) 
$$(1+i)^2$$
, (b)  $\frac{1+i}{1-i}$ , (c)  $\left(\frac{\sqrt{3}+i}{2}\right)^{101}$ .

(ii) Find all complex roots z of the equation

$$z^4 = \frac{1}{4} (1+i)^4.$$

Show on a diagram where these roots lie.

What is the sum of all the roots?

(iii) If z = x + iy, express the equation

$$z + \overline{z} = \frac{1}{z} + \frac{1}{\overline{z}}$$

in terms of x and y. Hence sketch the solution curves of this equation in the complex plane.

- 10. (i) (a) Define the functions  $\sin z$ ,  $\cos z$ ,  $\sinh z$ ,  $\cosh z$  (where z is a complex number) in terms of the exponential function.
  - (b) Find all complex roots z of the equation  $\tanh z = i$ .
  - (c) Hence or otherwise find all roots of the equation  $\tan^2(iz) = 1$ .
  - (ii) If z = x + iy, find the real and imaginary parts of  $\cos(z^2)$  in terms of trigonometric and hyperbolic functions of x and y.

Hence, find all complex numbers such that  $\cos(z^2)$  is real.

#### END OF PAPER





PAPER MATHEMATICS FOR ENGINEERING STUDENTS EXAMINATION QUESTION / SOLUTION T 1 **SESSION:** 2000 - 2001QUESTION Please write on this side only, legibly and neatly, between the margins SOLUTION 4 i)  $y' = 2(1-x^2)^{\frac{1}{2}} \sin x$  so  $(1-x^2)^{\frac{1}{2}} y' = 2 \sin x$ . 2  $(1-x^2)^{1/2}y' + (1-x^2)^{1/2}y'' = 2(1-x^2)^{1/2},$ 3 so  $(1-x^2)y'' - xy' - 2 = 0$ . ii)  $y' = 3e^{3x}$ ,  $y'' = 3^2 e^{3x}$ ,  $y'' = 3^n e^{3x}$ . With  $f(x) = x^2$ ,  $g(x) = e^{3x}$ . 2 With  $f(x) = x^2$ , g(x) = e $h^{(n)} = (f_g)^{(n)} = f_g^{(n)} + {}^{n}C_{i}f'_{g}^{(n-1)} + {}^{n}C_{j}f''_{g}^{(n-2)} + \dots$ =  $x^{2}3^{n}e^{3x} + n2x3^{n-1}e^{3x} + n(n-1)3^{n-2}e^{3x}$ . 2  $\frac{dI}{d\theta} = \sin\theta \left(2 - 2\cos\theta\right)^{-1/2}$ iil) 2 110+h1 - 110) ~ h to for homall. 2 :. For 0= 11/3, h= 0.01, the change in 1 is ~ 0.01.  $\frac{53}{2} \cdot 1 = \frac{1.732}{200}$ 2\_ = 0.00866 RIDLER - ROWE Setter : Setter's signature : J.R. CASH Checker's signature: \_ JR Carl, Checker:



Checker:

HALL

Setter's signature : Checker's signature :

J. Wilson AHOM.

PAPER MATHEMATICS FOR ENGINEERING STUDENTS EXAMINATION QUESTION / SOLUTION Ţ(i) 2000 - 2001 SESSION : OUESTION Please write on this side only, legibly and heatly, between the margins SOLUTION (i) Set u = lux, w du = dx, The 6 integral becomes  $\int u^2 du = \left[\frac{1}{3}u^3\right]_0^2 = \frac{1}{3}$ . 3 (ii) Let x = in u. The integral becomes  $\int^{\pi} 2 \cos^2 n \, dn = \frac{1}{2} \int^{\pi} 2 \left( 1 + \cos 2n \right) \, dn$  $= \frac{1}{2} \left[ u + \frac{1}{2} nim \lambda u \right]^{\frac{1}{2}} = \frac{1}{4}.$ (iii) Set x2 = u. The integral becomes  $\int \frac{\frac{1}{2} \, du}{(1+u)^2} = \frac{-1}{2(1+u)} = -\frac{1}{2(1+u^2)} \left( +c \right),$ (iv) By (iii), the integrand is  $x \frac{d}{dx} \left(-\frac{1}{x^{2}}\right)$ . Integrating by fasts, we get that the given integral is =  $-\frac{\chi}{2(1+\chi^2)} + \frac{1}{2} \left( \frac{d_{\chi}}{1+\chi^2} \right)$  $= + \frac{1}{2} \left[ \tan^{-1} x - \frac{x}{1+x^2} \right] (+c)$ WILSON Setter's signature : Setter : MALL Checker's signature : Checker:





MATHEMATICS FOR ENGINEERING STUDENTS  
EXAMINATION QUESTION / SOLUTION  
SESSION: 2000 - 2001  
Please when on this wide only, kepty and nearly, between the margine  
(i) (a) 
$$\sin z = \frac{e^{iz}}{2i} = e^{-iz}$$
,  $\cos z = \frac{e^{iz} + e^{-iz}}{2}$   
 $\sin Az = e^{\frac{z}{2}} = e^{-\frac{z}{2}}$ ,  $\cos z = \frac{e^{iz} + e^{-iz}}{2}$   
 $\sin Az = e^{\frac{z}{2}} = e^{-\frac{z}{2}}$ ,  $\cos z = \frac{e^{iz} + e^{-iz}}{2}$   
(b)  $e^{\frac{z}{2}} = e^{-\frac{z}{2}}$ ,  $\cos z = \frac{e^{iz} + e^{-iz}}{1 - i} = i$   
 $iz = e^{\frac{z}{2}} + e^{-z}$   
 $iz = i(\frac{\pi}{2} + n\pi)$  any integer  
(c)  $\tan^{2} i z = 1$   $\Rightarrow \tan i z = 1$   $\Rightarrow i \tan Az = 1$   $\Rightarrow \tan Az = i$   
 $\tan Az = -i$   $\Rightarrow \tan (b)$   
 $\tan Az = -i \Rightarrow \tan(c) = i \Rightarrow -z = i(\frac{\pi}{2} + n\pi)$   
 $z = i(-\frac{\pi}{2} + n\pi)$   
 $z = i($ 

-