UNIVERSITY OF LONDON

B.ENG. AND M.ENG. EXAMINATIONS 2001

For Internal Students of the Imperial College of Science, Technology and Medicine
This paper is also taken for the relevant examination for the Associateship.

PART I : MATHEMATICS 1

Wednesday 6th June $2001 \quad 10.00 \mathrm{am} \mathbf{- 1 . 0 0} \mathrm{pm}$

Answer EIGHT questions.
[Before starting, please make sure that the paper is complete; there should be 6 pages, with a total of 10 questions. Ask the invigilator for a replacement if your copy is faulty.]

1. Let

$$
f(x)=\frac{x+3}{2 x+1} .
$$

(i) Find the inverse function $f^{-1}(x)$ of $f(x)$.
(ii) Write $f(x)$ as the sum of an even and an odd function.
(iii) Find all solutions of the equation

$$
f(f(x))=0 .
$$

(iv) Find all solutions of the equation

$$
\frac{1}{f(\cos \theta)}=0
$$

2. Consider the curve defined by the equation

$$
y^{2}=x^{2}-\frac{x^{4}}{4} .
$$

(i) Find the coordinates of all stationary points of the curve.
(ii) Find the coordinates of all points at which $\frac{d y}{d x}$ becomes infinite.
(iii) Sketch the curve.
3. Find $\frac{d y}{d x}$ in each of the following cases.

In case (v) you may express your answer in terms of x and y.

$$
\begin{equation*}
y=e^{\sin x} \tag{i}
\end{equation*}
$$

(ii)

$$
y=\ln (\ln x) .
$$

(iii)

$$
y=x^{2} e^{x} \cos x
$$

(iv)

$$
y=x^{\ln x} .
$$

(v)

$$
x y+\ln (x y)=1
$$

4. (i) Show that if $y=\left(\sin ^{-1} x\right)^{2}$, then

$$
\left(1-x^{2}\right)^{1 / 2} \frac{d y}{d x}=2 \sin ^{-1} x
$$

Hence or otherwise show that y satisfies the equation

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-2=0
$$

(ii) Find the $n^{\text {th }}$ derivatives of the functions $f(x)=e^{3 x}$ and $h(x)=x^{2} e^{3 x}$.
(iii) Two sides of a triangle are of unit length and meet at angle θ. The length of the third side is given by $l(\theta)=(2-2 \cos \theta)^{1 / 2}$. Find $d l / d \theta$.

By using the formula

$$
\frac{d l}{d \theta}=\lim _{h \rightarrow 0} \frac{l(\theta+h)-l(\theta)}{h},
$$

find the approximate change in l if θ changes from $\frac{\pi}{3}$ to $\frac{\pi}{3}+0.01$ (in radians).
5. Evaluate the following limits :
(i)

$$
\lim _{x \rightarrow 5} \frac{3-\sqrt{x+4}}{x-5} ;
$$

(ii)

$$
\lim _{x \rightarrow 0} x^{-3} \tan ^{3}(3 x)
$$

(iii)

$$
\lim _{x \rightarrow 0} \frac{\ln \left(1+3 x^{2}\right)}{1+x-e^{x}} ;
$$

(iv)

$$
\lim _{x \rightarrow \pi / 3} \frac{1+\cos 3 x}{\sqrt{3}-\tan x} .
$$

6. Evaluate the following integrals :

$$
\begin{equation*}
\int_{1}^{e} \frac{(\ln x)^{2}}{x} d x \tag{i}
\end{equation*}
$$

(ii)

$$
\int_{0}^{1} \sqrt{1-x^{2}} d x
$$

(iii)

$$
\int \frac{x d x}{\left(1+x^{2}\right)^{2}}
$$

(iv)

$$
\int \frac{x^{2} d x}{\left(1+x^{2}\right)^{2}}
$$

7. (i) Express the function

$$
\frac{2 x}{\left(x^{2}+1\right)(x-1)}
$$

in partial fraction form, and hence find

$$
\int \frac{2 x d x}{\left(x^{2}+1\right)(x-1)} .
$$

(ii) Let

$$
I_{n}=\int_{0}^{\pi} \sin ^{n} x d x
$$

By integrating by parts, prove that for $n \geq 2$,

$$
I_{n}=\frac{n-1}{n} I_{n-2} .
$$

Hence find

$$
\int_{0}^{\pi} \sin ^{6} x d x
$$

8. (i) Find which of the following series converge:
(a) $\quad \sum_{n=1}^{\infty} \frac{n}{2^{n}} ;$
(b) $\sum_{n=1}^{\infty} \frac{n!}{2^{n}} ;$
(c) $\quad \sum_{n=1}^{\infty} \frac{n}{n+10}$.
(ii) Find the radius of convergence of the power series

$$
\sum_{n=0}^{\infty}(n+1) x^{n} .
$$

(iii) Find $\frac{d^{n}}{d x^{n}}(1-x)^{-2}$ and hence show that the Maclaurin expansion of $(1-x)^{-2}$ is given by the series in part (ii).
9. (i) Express each of the following in the form $a+i b$:
(a) $(1+i)^{2}$,
(b) $\frac{1+i}{1-i}$,
(c) $\left(\frac{\sqrt{3}+i}{2}\right)^{101}$.
(ii) Find all complex roots z of the equation

$$
z^{4}=\frac{1}{4}(1+i)^{4} .
$$

Show on a diagram where these roots lie.
What is the sum of all the roots?
(iii) If $z=x+i y$, express the equation

$$
z+\bar{z}=\frac{1}{z}+\frac{1}{\bar{z}}
$$

in terms of x and y. Hence sketch the solution curves of this equation in the complex plane.
10. (i) (a) Define the functions $\sin z, \cos z, \sinh z, \cosh z$ (where z is a complex number) in terms of the exponential function.
(b) Find all complex roots z of the equation $\tanh z=i$.
(c) Hence or otherwise find all roots of the equation $\tan ^{2}(i z)=1$.
(ii) If $z=x+i y$, find the real and imaginary parts of $\cos \left(z^{2}\right)$ in terms of trigonometric and hyperbolic functions of x and y.

Hence, find all complex numbers such that $\cos \left(z^{2}\right)$ is real.

(a) $y^{2}=x^{2}-x^{4 / 4}$

Differentiating wot x :

$$
\begin{align*}
2 y \frac{d y}{d x} & =2 x-x^{3} \\
\Rightarrow \frac{d y}{d x} & =\frac{2 x-x^{3}}{2 y}=\frac{x\left(2-x^{2}\right)}{2 y}
\end{align*}
$$

Stat. pts $\longleftrightarrow \frac{d y}{d x}=0$
Only stat pts are at $x= \pm \sqrt{2}$
i.e $(\sqrt{2}, 1) ;(\sqrt{2},-1) ;(-\sqrt{2}, 1) ;(-\sqrt{2},-1)$
N.B no stat pt at $(0,0)$ - look at as limit_{0}
(b) From (d), $\frac{d y}{d x} \rightarrow \infty$ when $\frac{d y}{d x}=\frac{ \pm\left(2-x^{2}\right)}{2 x \sqrt{1-x^{2} / 4}} \rightarrow \infty$.
i.e when $x= \pm 2$
(c) Note curve invariant under transformations

$$
\begin{aligned}
& x \rightarrow-x
\end{aligned}
$$

$$
y \mapsto-y
$$

\Rightarrow rettectionally-sgmunetre in $x \& y$ axes

Setter: D. crew ray checker: Willow EXAMINATION QUESTION/SOLUTION

SESSION: 2000-2001
i) $y^{\prime}=\frac{d}{d x} e^{u}$, where $u=\sin x$,

$$
=\frac{d u}{d x} \frac{d}{d u} e^{u}=\cos x e^{u}=\cos x e^{\sin x} .
$$

ii)

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x} \ln u, \text { where } u=\ln x, \\
& =\frac{d u}{d x} \frac{d}{d u} \ln u=\frac{1}{x} \frac{1}{u}=\frac{1}{x \ln x} .
\end{aligned}
$$

iii)

$$
\begin{aligned}
y^{\prime} & =\left(x^{2} v\right)^{\prime} \quad \text { where } v=e^{x} \cos x \\
& =2 x v+x^{2} v^{\prime} \\
& =2 x e^{x} \cos x+x^{2} e^{x} \cos x-x^{2} e^{x} \sin x
\end{aligned}
$$

(or wee logarithmic differentiation).
(iv)

$$
\begin{aligned}
\ln y & =(\ln x)^{2} \\
\therefore \quad \frac{y^{\prime}}{y} & =\frac{2}{x} \ln x, \quad y^{\prime}=2 x^{-1} y \ln x=2 x^{\ln x-1} \ln x .
\end{aligned}
$$

v) $x y+\ln x+\ln y=1$.

$$
\begin{gathered}
\therefore \quad y+x y^{\prime}+\frac{1}{x}+\frac{y^{\prime}}{y}=0, \quad y^{\prime} \frac{x y+1}{y}+\frac{x y+1}{x}=0 \\
y^{\prime}=-y / x .
\end{gathered}
$$ EXAMINATION QUESTION/SOLUTION

SESSION : 2000-2001.

ii) $y^{\prime}=3 e^{3 x}, y^{\prime \prime}=3^{2} e^{3 x}, \ldots, y^{(n)}=3^{n} e^{3 x}$.
witt $f(x)=x^{2}, g(x)=e^{3 x}$,

$$
\begin{aligned}
h^{(n)}=\left(f_{g}\right)^{(n)} & =f g^{(n)}+C_{1} f^{\prime} g^{(n-1)}+{ }^{n} C_{2} f^{\prime \prime} g^{(n-2)}+\ldots \\
& =x^{2} 3^{n} e^{3 x}+n 2 \times 3^{n-1} e^{3 x}+n(n-1) 3^{n-2} e^{3 x}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \frac{d f}{d \theta}=\sin \theta(2-2 \cos \theta)^{-1 / 2} \\
f(\theta+h) & -f(\theta) \simeq h \frac{d f}{d \theta} \text { for } h \text { small } . \\
\therefore & \text { For } \theta=\pi / 3, h=0.01,
\end{aligned}
$$

the change in 1 is $\simeq 0.01 \cdot \frac{\sqrt{3}}{2} \cdot 1=\frac{1.732}{200}$

$$
=0.00866
$$

MATHEMATICS FOR ENGINEERING STUDENTS EXAMINATION QUESTION/ SOLUTION

SESSION: 2000-2001
Please write on this side only, legibly and neath, between the margins
(i) $\frac{3-\sqrt{x+4}}{x-5}=\frac{5-x}{(x-5)(3+\sqrt{x+4})}=\frac{-1}{3+\sqrt{x}}$
as $x \rightarrow 5$, this $\rightarrow \frac{-1}{3+\sqrt{9}}=-\frac{1}{6}$
(ii) $x^{-3} \tan ^{3}(3 x)=\left(\frac{\sin 3 x}{3 x}\right)^{3} \cdot \frac{27}{\cos ^{3}(3 x)}$
a, $x \rightarrow 0$, this $\rightarrow 1^{3} \cdot \frac{27}{1^{3}}=27$
(iii) $\frac{\ln \left(1+3 x^{2}\right)}{1+x-e^{x}}=\frac{+3 x^{2}+\cdots}{-x^{2} / 2+\cdots}$
an $x \rightarrow 0$, This $\rightarrow \frac{3}{-1 / 2}=-6$.
(iv) by l'Hoffitiols rale,

$$
\begin{aligned}
& \lim _{x \rightarrow \pi / 3} \frac{1+\cos 3 x}{\sqrt{3}-\tan x}=\lim _{x \rightarrow \pi / 3} \frac{-3 \sin 3 x}{-\operatorname{sen}^{2} x} \\
& =\lim _{x \rightarrow \pi / 3}\left(+3 \sin 3 x \cos ^{2} x\right)=0
\end{aligned}
$$ EXAMINATION QUESTION/SOLUTION

SESSION : 2000-2001
(i) Set $u=\ln x$, no $d u=d x / x$. The integral beioren $\int_{0}^{1} u^{2} d n=\left[\frac{1}{3} u^{3}\right]_{0}^{1}=\frac{1}{3}$.
(ii) Set $x=\sin u$. The integral becomes

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \cos ^{2} u d u=\frac{1}{2} \int_{0}^{\pi / 2}(1+\cos 2 n) d u \\
& =\frac{1}{2}\left[u+\frac{1}{2} \sin 2 u\right]_{0}^{\pi / 2}=\pi / 4
\end{aligned}
$$

(iii) Set $x^{2}=4$. The integral becomes

$$
\int \frac{\frac{1}{2} d x}{(1+n)^{2}}=\frac{-1}{2(1+n)}=-\frac{1}{2\left(1+x^{2}\right)}(+c)
$$

(iv) By (iii), the integrand is $x \frac{d}{d x}\left(-\frac{1}{2\left(1+x^{2}\right)}\right)$. Integrating by farts, we get that the given integral is $=-\frac{x}{2\left(1+x^{2}\right)}+\frac{1}{2} \int \frac{d x}{1+x^{2}}$

$$
=\quad+\frac{1}{2}\left[\tan ^{-1} x-\frac{x}{1+x^{2}}\right](+c)
$$

SESSION: 2000-2001

$$
\begin{aligned}
& \text { (i) } \frac{2 x}{\left(x^{2}+1\right)(x-1)}=\frac{A x+B}{x^{2}+1}+\frac{C}{x-1} \\
& 2 x=(A x+B)(x-1)+C\left(x^{2}+1\right) .
\end{aligned}
$$

$$
\text { Comparing coefficients } \Rightarrow A=-1, B=c=1, \quad 5 \sigma
$$

$$
\frac{2 x}{\left(x^{2}+1\right)(x-1)}=\frac{-x+1}{x^{2}+1}+\frac{1}{x-1}
$$

$$
\therefore \int \frac{2 x d x}{\left(x^{2}+1\right)(x-1)}=-\frac{1}{2} \ln \left(x^{2}+1\right)+\tan ^{-1} x+\ln |x-1|
$$

$$
\text { (ii) } \quad I_{n}=\int_{0}^{\pi} \sin ^{n} x d x=-\int_{0}^{\pi} \sin ^{n-1} x \frac{d}{d x}(\cos x) d x
$$

$$
=-\left[\sin ^{n-1} x \cos x\right]_{0}^{\pi}+\int_{0}^{\pi}(n-1) \sin ^{n-2} x \cos ^{2} x d x .
$$

$$
=0+(n-1) \int_{0}^{\pi} \sin ^{n-2} x\left(1-\sin ^{2} x\right) d x
$$

$$
=(n-1)\left(I_{n-2}-I_{n}\right)
$$

Hence $n I_{n}=(n-1) I_{n-2}$, ie. $I_{n}=\frac{n-1}{n} I_{n-2}$

$$
\begin{aligned}
& \therefore I_{6}=\frac{5}{6} I_{4}=\frac{5}{6} \frac{3}{4} I_{2}=\frac{5}{6} \frac{3}{4} \frac{1}{2} I_{0} \\
& =\frac{5}{16} I_{0}=\frac{5 \pi}{16}
\end{aligned}
$$

Setter: WILSON
Checker:

Setters signature :
checker's signature: phalli

SESSION: 2000-2001

$$
\left|\frac{(n+1)^{+k} \operatorname{ter} m}{n^{n} \operatorname{tarm}}\right|=\frac{n+1}{2^{n+1}} \frac{2^{n}}{n}=\frac{n+1}{n} \frac{1}{2} \rightarrow \frac{1}{2} \quad \text { as } n \rightarrow \infty
$$

Limit in <1.
\therefore Series converges.
b) Using the Ratio Text

$$
\left|\frac{(n+1)^{\prime} \operatorname{tarm}}{n^{n} \tan }\right|=\frac{(n+1)!}{2^{n+1}} \frac{2^{n}}{n!}=\frac{n+1}{2} \rightarrow \infty \text { ans } n \rightarrow \infty \text {. }
$$

Limit $\Rightarrow>1 \quad \therefore$ Series diverges.
c) $n^{\text {th }}$ tam $\rightarrow 1$ as $n \rightarrow \infty$. \therefore Divergent sure $n^{\text {it }} \rightarrow$ m f o.
ii) Fix $x \neq 0 .\left|\frac{(n+1)^{x} \operatorname{tam}}{n^{2} \operatorname{tinm}}\right|=\frac{n+2}{n+1}|x| \rightarrow|x| \rightarrow n \rightarrow \infty$.
$\therefore B y$ Ratio Giant, the series converges of $\operatorname{limif}|x|<1$ and diverges of limit $|x|>1$.
So radix of emergence $=1$.
iii) Put $f(x)=(1-x)^{-2}, \quad f^{\prime}=2(1-x)^{-3}, f^{\prime \prime}=2.3(1-x)^{-4}$,

$$
f^{\prime \prime \prime}=2.3 .4(1-x)^{-5}, \cdots, \quad f^{(n)}=(n+1)!(1-x)^{-n-2}
$$

Machourni series has nit term

$$
\frac{f^{(n)}(0)}{n!} x^{n}=\frac{(n+1)!}{n!} x^{n}=(n+1) x^{n}
$$

giving the session ii).

SESSION : 2000-2001
Please write on this side only, legibly and neatly, between the margins
(i) (a) $(1+i)^{2}=2 i$
(b) $\frac{1+i}{1-i}=\frac{(1+i)(1+i)}{(1-i)(1+i)}=i$
(c) $\left(\frac{\sqrt{3}+i}{2}\right)^{101}=\left(e^{i \pi / 6}\right)^{101}=e^{16 i \pi+\frac{5 i \pi}{6}}=\frac{(-\sqrt{3}+i)}{2}$
(ii)

$$
\begin{aligned}
z^{4}= & \frac{1}{4}(1+i)^{4}=\left(\frac{1+i}{\sqrt{2}}\right)^{4}=\left(e^{i \pi / 4}\right)^{4}=e^{i \pi+2 i n \pi} \\
\Rightarrow z & =e^{i \pi / 4+i n \pi / 2} \quad n=0,1,2,3 \\
z_{1}= & e^{i \pi / 4}, \quad z_{2}=e^{3 i \pi / 4}, \quad z_{3}=e^{\operatorname{si\pi /4}}, z_{4}=e^{7 i \pi / 4}
\end{aligned}
$$

$\sum z_{i}=0$ form the diagram
(iii)

$$
\begin{aligned}
& x+i y+x-i y=\frac{1}{x+i y}+\frac{1}{x-i y} \\
& \quad 2 x=\frac{x-i y}{x^{2}+y^{2}}+\frac{x+i y}{x^{2}+y^{2}} \Rightarrow 2 x=\frac{2 x}{x^{2}+y^{2}}
\end{aligned}
$$

$x=0 \quad$ OR $\quad x^{2}+y^{2}=1$

MATHEMATICS FOR ENGINEERING STUDENTS EXAMINATION QUESTION/SOLUTION

SESSION : 2000-2001
(i) (a) $\sin z=\frac{e^{i z}-e^{-i z}}{2 i}, \cos z=\frac{e^{i z}+e^{-i z}}{2}$

$$
\sin z=\frac{e^{z}-e^{-z}}{2}, \cosh z=\frac{e^{z}+e^{-z}}{2}
$$

(b)

$$
\begin{aligned}
& \frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}=i \Rightarrow e^{2 z}=\frac{1+i}{1-i}=i \\
& |i|=1 \arg (i)=\frac{\pi}{2}+2 n \pi \Rightarrow 2 z=\ln 1+i\left(\frac{\pi}{2}+2 n \pi\right) \\
& z=i\left(\frac{\pi}{4}+n \pi\right) \text { any integer }
\end{aligned}
$$

(c) $\tan ^{2} i z=1 \Rightarrow \tan i z=1 \Rightarrow i \tanh z=1 \Rightarrow \tanh z=i$

$$
\operatorname{tani} z=-1 \Rightarrow i \tanh z=-1 \Rightarrow \tanh z=-i
$$

$\tanh z=i$ as in part (b)

$$
\begin{aligned}
\tanh z=-i \Rightarrow \tanh (-z)=i \Rightarrow-z & =i\left(\frac{\pi}{4}+n \pi\right) \\
z & =i\left(-\frac{\pi}{4}+n \pi\right)
\end{aligned}
$$

x any integer
(ii)

$$
\begin{aligned}
& \cos \left(z^{2}\right)=\cos \left(x^{2}-y^{2}+2 i x y\right)= \cos \left(x^{2}-y^{2}\right) \cos (2 i x y) \\
&-\sin \left(x^{2}-y^{2}\right) \sin (2 i x y) \\
&= \cos \left(x^{2}-y^{2}\right) \cosh 2 x y-i \sin \left(x^{2}-y^{2}\right) \sinh 2 x y \\
& \cos \left(z^{2}\right) \text { real } \Rightarrow \sin \left(x^{2}-y^{2}\right) \sinh 2 x y=0 \\
& \Rightarrow x=0 \text { or } y=0 \text { or } \frac{x^{2}-y^{2}=x \pi}{n a y \text { integer }}
\end{aligned}
$$

