MA2602 Linear Algebra

Set task - Summer 2013

Attemp all questions

Turn over ...

Linear Algebra

In the following questions, $M(2,2)$ denotes the vector space over \mathbb{R} of all real-valued 2×2 matrices, with \oplus given by matrix addition and • (scalar multiplication) by multiplication of matrices by real numbers. P_{n} denotes the vector space of all polynomials of degree at most n with real coefficients, with \oplus being addition of polynomials and \cdot multiplication of polynomials by real numbers.

1. (a) Determine whether the following subsets are subspaces (giving reasons for your answers).
i. $S=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4} \mid x_{1}-x_{2}+x_{3}-x_{4}=0\right\}$ in \mathbb{R}^{4}
ii. $T=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a b=0\right\}$ in $M(2,2)$
iii. $U=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n} \in P_{n} \mid a_{0}=a_{1}\right\}$ in P_{n}
(b) Write down two different bases for the real vector space P_{2}.
(c) Determine which of the following vector sets in \mathbb{R}^{3} are linearly independent, spanning, or neither. Are any of them a basis for \mathbb{R}^{3} ?
i. $\{(1,2,0),(1,2,3),(6,5,4)\}$
ii. $\{(1,0,1),(-1,3,-4),(-4,3,5),(3,0,-9)\}$
2. (a) Are the following maps linear? Justify your answers.
i. $f: \mathbb{R}^{3} \rightarrow P_{2}$, with $f\left(a_{0}, a_{1}, a_{2}\right)=a_{0}+a_{1} x+a_{2} x^{2}$.
ii. $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, with $f(x, y)=(x-y, y+1)$
iii. $f: P_{2} \rightarrow P_{2}$, with $f\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=a_{2}+a_{1} x+a_{0} x^{2}$
(b) Is there a linear map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ such that $f(1,1)=(1,2,-1)$, $f(1,2)=(0,1,0)$ and $f(3,1)=(5,8,-4)$? Justify your answer.
(c) Define the rank and the nullity of a linear map and state carefully the Rank-Nullity theorem.
(d) Find bases for the image and the kernel of the linear map $f: P_{2} \rightarrow P_{1}$ given by $f(p(x))=\frac{d}{d x} p(x)$. Based on your results, indicate whether f is injective or surjective.
3. (a) Let A be a real $n \times n$ matrix. Define what is meant by an eigenvector and an eigenvalue for A.
(b) State the diagonalization theorem for matrices.
(c) Let $A=\left(\begin{array}{lll}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right)$. Use the diagonalization theorem to find an invertible 3×3 matrix P such that $P^{-1} A P$ is diagonal. Calculate $P^{-1} A P$ and show that its non-zero entries agree with the eigenvalues of A.
4. Let V be an inner product space. The angle between any two vectors \mathbf{u} and \mathbf{v} in V is defined as

$$
\theta=\arccos \frac{\langle\mathbf{u}, \mathbf{v}\rangle}{\|\mathbf{u}\|\|\mathbf{v}\|}
$$

(a) Take $V=M(2,2)$ with $\langle A, B\rangle=\operatorname{Tr}\left(B^{T} A\right)$. Calculate the angle between the matrices

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

(b) Define the notion of an orthonormal set of vectors. Do the following vectors in $M(2,2)$ form an orthonormal set?

$$
C=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right), D=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right), E=\frac{1}{\sqrt{3}}\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) .
$$

Justify your answer.
(c) Use the Gram-Schmidt process to construct an orthonormal basis for $M(2,2)$ starting from the basis

$$
\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\right\}
$$

Internal Examiner: M. Alvarez External Examiner: Professor J. Billingham

