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1. (a) [10 marks] Determine whether the following subsets are subspaces
giving reasons for your answers.

i. U = {(x1, x2) | x2

1
+ x2

2
= 0} ⊂ R

2.

ii. V = {(x1, x2) | x2

1
− x2

2
= 0} ⊂ R

2.

iii. W =

{

A ∈ M(2, 2)
∣

∣

∣ A

(

1
1

)

=

(

0
0

)}

⊂ M(2, 2).

(b) [15 marks] Determine whether the following vector sets are linearly
independent, spanning, or neither:

i.
{

2 + x + x2, 1 + 2x + x2, 1 + x + 2x2
}

in P2;

ii.
{

(1 − x)2, (1 + x)2, 1 + x2
}

in P2;

iii.

{(

1 1
0 0

)

,

(

1 0
1 0

)

,

(

0 0
1 1

)

,

(

0 1
0 1

)}

in M(2, 2).

2. (a) [9 marks] Are the following maps linear? Justify your answers.

i. f : R
2 7→ P2, with f(a, b) = (x − a)2 + (x − b)2

ii. g : P2 → M(2, 2), with g(p(x)) =

(

p(0) p(1)
p(1) p(2)

)

iii. h : M(2, 2) → R
2, with h(M) = M

(

1
0

)

.

(b) [8 marks] Give the general expression h(x, y, z) for the linear map
h : R

3 → R
3 defined by h(1, 1, 1) = (2, 2, 0), h(1, 2, 1) = (3, 3, 0) and

h(1, 0, 0) = (1, 0, 1).

(c) [8 marks] Find bases for the image and the kernel of the linear map
h from (b). Then state the Rank-Nullity theorem for linear maps
and verify it for h.
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3. Consider the linear map

g : P2 → P2 : p(x) 7→ p(1) +
d

dx
(p(x))

for all p(x) ∈ P2.

(a) [5 marks] Find g(1), g(x) and g(x2) and hence find the matrix A

representing g with respect to the ordered basis {1, x, x2} of P2.

(b) [10 marks] Find g(1+x) and g(1+x+x2) and hence find the matrix
B representing g with respect to the ordered basis {1, 1+x, 1+x+x2}
of P2.

(c) [10 marks] Express each vector 1, 1+x and 1+x+x2 in coordinate
form with respect to the ordered basis {1, x, x2} and hence find the
change of basis matrix P and check that it satisfies the Change of
Basis Theorem, namely P−1AP = B.

4. (a) [10 marks] Consider the following matrix, in which c is a constant:

M =

(

1 1
c 1

)

.

State the diagonalisation theorem for matrices and discuss for which
values of c is M diagonalisable over R.

(b) [15 marks] Calculate the eigenvalues and eigenvector subspaces of
the matrix

A =





2 −3 3
3 −4 3
6 −6 5



 .

Is A is diagonalisable? If it is then find an appropriate change of basis
matrix P and show by explicit calculation that P−1AP is diagonal.
It it is not, explain in detail why.
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5. (a) [10 marks] For any two vectors x = (x1, x2) and y = (y1, y2) ∈ R
2

define the map

〈x,y〉 = (x1 + x2)(y1 + y2) + (x1 − x2)(y1 − y2).

Is this map an inner product in R
2? Justify your answer.

(b) [15 marks] Consider the vector set

S =

{

1 + x, 1 +
1

3
x2,

1

2
x +

1

3
x2

}

,

which is a basis of P2. By means of the Gram-Schmidt procedure,
construct from S a basis of P2 that is orthonormal with respect to
the inner product

〈p(x), q(x)〉 = p0q0 + 2p1q1 + 3p2q2

in which p(x) = p0 + p1x + p2x
2 and q(x) = q0 + q1x + q2x

2.
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