MA2602 Linear Algebra. Solutions to 2013 paper

All questions are **unseen** except for the definitions in 2c and 4a.

- 1. (a) i. [2 marks] Note that $\mathcal{U} = \{(0,0)\}$ which is obviously a subspace of \mathbb{R}^2 .
 - ii. [4 marks] Even though \mathcal{V} contains (0,0) and for all $x \in \mathcal{V}$ and $\lambda \in \mathbb{R}$ we have $\lambda x \in \mathcal{V}$, it fails to contain the sum of any two of its elements. For example, (1,1) and (1,-1) are in \mathcal{V} but their sum (2,0) is not, so \mathcal{V} is not a subspace of \mathbb{R}^2 .
 - iii. [4 marks] The subset \mathcal{W} contains the 2 × 2 zero matrix, and for every A and B in \mathcal{W} and $\lambda \in \mathbb{R}$ we have A + B and λA in \mathcal{W} . Therefore \mathcal{W} is a subspace of M(2, 2).
 - (b) i. [5 marks] Linearly independent because the only solution to $\alpha(2 + x + x^2) + \beta(1 + 2x + x^2) + \gamma(1 + x + 2x^2) = 0$ is $\alpha = \beta = \gamma = 0$. Being a maximal independent set in P_2 , it is also spanning and therefore a basis.
 - ii. [5 marks] Linearly dependent: $(1-x)^2 + (1+x)^2 = 2(1+x^2)$. Not spanning.
 - iii. [5 marks] Linearly dependent. Note for example that

$$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Also, not spanning.

- 2. (a) i. [2 marks] f is not linear. Note *e.g.* that $f(0,0) = 2x^2$ instead of the zero polynomial.
 - [4 marks] g is linear. Check the two conditions. For any $a_0 + a_1x + a_2x^2$ and $b_0 + b_1x + b_2x^2 \in P_2$ and $\lambda \in \mathbb{R}$:
 - A. $g((a_{0} + a_{1}x + a_{2}x^{2}) + (b_{0} + b_{1}x + b_{2}x^{2})) = g(a_{0} + b_{0} + (a_{1} + b_{1})x + (a_{2} + b_{2})x^{2}) = \begin{pmatrix} a_{0} + b_{0} & a_{0} + b_{0} + a_{1} + b_{1} + a_{2} + b_{2} \\ a_{0} + b_{0} + a_{1} + b_{1} + a_{2} + b_{2} & a_{0} + b_{0} + 2(a_{1} + b_{1}) + 4(a_{2} + b_{2}) \end{pmatrix}$ $= g(a_{0} + a_{1}x + a_{2}x^{2}) + g(b_{0} + b_{1}x + b_{2}x^{2});$ B. $g(\lambda(a_{0} + a_{1}x + a_{2}x^{2})) = g(\lambda a_{0} + \lambda a_{1}x + \lambda a_{2}x^{2}) = \begin{pmatrix} \lambda a_{0} & \lambda a_{0} + \lambda a_{1} + \lambda a_{2} \\ \lambda a_{0} + \lambda a_{1} + \lambda a_{2} & \lambda a_{0} + 2\lambda a_{1} + 4\lambda a_{2} \end{pmatrix}$ $= \lambda g(a_{0} + a_{1}x + a_{2}x^{2}).$

ii. [3 marks] h is linear. Check two conditions:

A.
$$h(M_1 + M_2) = (M_1 + M_2) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = M_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + M_2 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

= $h(M_1) + h(M_2);$
B. $h(\lambda M) = (\lambda M) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \lambda h(M).$

(b) [8 marks] Decompose (x, y, z) in the basis (1, 1, 1), (1, 2, 1) and (1, 0, 0):

$$(x, y, z) = (-y + 2z)(1, 1, 1) + (y - z)(1, 2, 1) + (x - z)(1, 0, 0).$$

Then linearity implies h(x, y, z) = (x + y, y + z, x - z).

(c) [8 marks] For any linear map $f: V \to W$ the rank of f (written $\operatorname{Rank}(f)$) is the dimension of $\operatorname{Img}(f)$ and the nullity of f, written $\operatorname{Null}(f)$, is the dimension of $\operatorname{Ker}(f)$. For the linear map in question, $\operatorname{Ker} h = \{(x, -x, x) \mid x \in \mathbb{R}\}$ with basis $\{(1, -1, 1)\}$, for example. Then $\operatorname{Null}(h) = 1$. Now $\operatorname{Img} h = \{(a + b, b, a) \mid a, b \in \mathbb{R}\}$ with basis $\{(1, 0, 1), (1, 1, 0)\}$ for example, so $\operatorname{Rank}(h) = 2$. The Rank-Nullity Theorem states that

$$\dim(V) = \operatorname{Rank}(h) + \operatorname{Null}(h).$$

Because $V = \mathbb{R}^3$ has dimension three the Rank-Nullity theorem is satisfied: 3=2+1.

3. (a) [5 marks] We have $g(1) = 1 + 0 = 1 = 1.1 + 0x + 0x^2$, $g(x) = 1 + 1 = 2 = 2.1 + 0x + 0x^2$ and $g(x^2) = 1 + 2x = 1.1 + 2x + 0x^2$. Thus the matrix representing g with respect to the basis $\{1, x, x^2\}$ is given by

$$A = \left(\begin{array}{rrrr} 1 & 2 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{array}\right).$$

(b) [10 marks] We have $g(1) = 1 = 1.1 + 0(1 + x) + 0(1 + x + x^2)$, $g(1+x) = 3 = 3.1 + 0(1 + x) + 0(1 + x + x^2)$ and $g(1 + x + x^2) = 4 + 2x = 2.1 + 2(1+x) + 0(1+x+x^2)$. Thus the matrix representing g with respect to the basis $\{1, 1 + x, 1 + x + x^2\}$ is given by

$$B = \left(\begin{array}{rrrr} 1 & 3 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{array}\right).$$

(c) [10 marks] We have $1 = 1.1 + 0x + 0x^2$, $1 + x = 1.1 + 1x + 0x^2$ and $1 + x + x^2 = 1.1 + 1x + 1x^2$. Thus the change of basis matrix is given by

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$
$$P^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

and we check that

We have

$$P^{-1}AP = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 3 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} = B$$

as required.

4. (a) [10 marks] The matrix is diagonalisable over \mathbb{R} if and only if there is a basis of \mathbb{R}^2 consisting of eigenvectors of M with real eigenvalues. The characteristic polynomial of M is $(1-\lambda)^2 - c$, so the eigenvalues are $\lambda_{\pm} = 1 \pm \sqrt{c}$. Therefore the first requirement for M to be diagonalisable over \mathbb{R} is that $c \geq 0$.

The eigenvector subspace corresponding to λ_+ is

$$S_M(\lambda_+) = \{ \mathbf{v} \in \mathbb{R}^2 \, | \, (M - \lambda_+) \mathbf{v} = \mathbf{0} \},\$$

which for $\mathbf{v} = (v_1, v_2)$ requires $v_2 = \sqrt{c} v_1$. Therefore

$$S_M(\lambda_+) = \{ (x, \sqrt{c} x) \mid x \in \mathbb{R} \}$$

generated by $(1, \sqrt{c})$. Similarly

$$S_M(\lambda_-) = \{ \mathbf{v} \in \mathbb{R}^2 \mid (M - \lambda_-) \mathbf{v} = \mathbf{0} \} = \{ (x, -\sqrt{c} x) \mid x \in \mathbb{R} \}$$

Generated by $(1, -\sqrt{c})$. The matrix M will be diagonalisable if and only if $\{(1, \sqrt{c}), (1, -\sqrt{c})\}$ constitutes a basis, which it will if and only if $c \neq 0$.

In conclusion, M is diagonalisable if and only if c > 0.

(b) [15 marks] Solving the characteristic equation of the matrix A gives the eigenvalues $\lambda_1 = \lambda_2 = -1$ and $\lambda_3 = 5$. The eigenvector subspaces are

$$S_A(-1) = \{ (y - z, y, z) \mid y, z \in \mathbb{R} \} \text{ with basis } \{ (1, 1, 0), (-1, 0, 1) \};$$

$$S_A(5) = \{ (x, x, 2x) \mid x \in \mathbb{R} \} \text{ with basis } \{ (1, 1, 2) \}.$$

Arranging the coordinates of (a choice of) eigenvector basis into columns gives the change of basis matrix P:

$$P = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix} \text{ with inverse } P^{-1} = \begin{pmatrix} -1/2 & 3/2 & -1/2 \\ -1 & 1 & 0 \\ 1/2 & -1/2 & 1/2 \end{pmatrix}.$$

Direct calculation shows that $P^{-1}AP$ is diagonal, with diagonal entries given by -1, -1, 5.

5. (a) **[10 marks]** Symmetry and linearity in the two variables is obvious. Positivity is also clear:

$$\langle \mathbf{x}, \mathbf{x} \rangle = (x_1 + x_2)^2 + (x_1 - x_2)^2 \ge 0.$$

Also, $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ requires $x_1 - x_2 = 0$ and $x_1 + x_2 = 0$. Hence $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ if and only $\mathbf{x} = \mathbf{0}$. In conclusion, it is an inner product.

(b) [15 marks] Start by defining $\mathbf{w}_1 = 1 + x$, which is of norm $\sqrt{3}$ with respect to the stated inner product. Then define

$$\mathbf{v}_1 = \frac{1}{\sqrt{3}}(1+x).$$

Now take

$$\mathbf{w}_{2} = 1 + \frac{1}{3}x^{2} - \left\langle 1 + \frac{1}{3}x^{2}, \mathbf{v}_{1} \right\rangle \mathbf{v}_{1} = 1 + \frac{1}{3}x^{2} - \frac{1}{\sqrt{3}}\frac{1}{\sqrt{3}}(1+x)$$
$$= \frac{1}{3}\left(2 - x + x^{2}\right),$$

which is of norm one in the given inner product. Then

$$\mathbf{v}_2 = \mathbf{w}_2/||\mathbf{w}_2|| = \frac{1}{3} (2 - x + x^2).$$

Finally, define

$$\mathbf{w}_{3} = \frac{1}{2}x + \frac{1}{3}x^{2} - \left\langle \frac{1}{2}x + \frac{1}{3}x^{2}, \mathbf{v}_{1} \right\rangle \mathbf{v}_{1} - \left\langle \frac{1}{2}x + \frac{1}{3}x^{2}, \mathbf{v}_{2} \right\rangle \mathbf{v}_{2}$$
$$= \frac{1}{2}x + \frac{1}{3}x^{2} - \frac{1}{\sqrt{3}}\frac{1}{\sqrt{3}}(1+x) - 0 = \frac{1}{3}(-1 + \frac{1}{2}x + x^{2}),$$

which has norm $||\mathbf{w}_3|| = 1/\sqrt{2}$. Then

$$\mathbf{v}_3 = \frac{\sqrt{2}}{3} \left(-1 + \frac{1}{2}x + x^2 \right).$$

In conclusion, the orthonormal basis is

$$\left\{\frac{1}{\sqrt{3}}(1+x), \quad \frac{1}{3}\left(2-x+x^2\right), \quad \frac{\sqrt{2}}{3}\left(-1+\frac{1}{2}x+x^2\right)\right\}.$$