MA2602 Linear Algebra. Solutions to 2013 paper

All questions are unseen except for the definitions in 2c and 4a.

1. (a) i. [2 marks] Note that $\mathcal{U}=\{(0,0)\}$ which is obviously a subspace of \mathbb{R}^{2}.
ii. [4 marks] Even though \mathcal{V} contains $(0,0)$ and for all $x \in \mathcal{V}$ and $\lambda \in \mathbb{R}$ we have $\lambda x \in \mathcal{V}$, it fails to contain the sum of any two of its elements. For example, $(1,1)$ and $(1,-1)$ are in \mathcal{V} but their sum $(2,0)$ is not, so \mathcal{V} is not a subspace of \mathbb{R}^{2}.
iii. [4 marks] The subset \mathcal{W} contains the 2×2 zero matrix, and for every A and B in \mathcal{W} and $\lambda \in \mathbb{R}$ we have $A+B$ and λA in \mathcal{W}. Therefore \mathcal{W} is a subspace of $M(2,2)$.
(b) i. [5 marks] Linearly independent because the only solution to $\alpha\left(2+x+x^{2}\right)+\beta\left(1+2 x+x^{2}\right)+\gamma\left(1+x+2 x^{2}\right)=0$ is $\alpha=\beta=\gamma=0$. Being a maximal independent set in P_{2}, it is also spanning and therefore a basis.
ii. [5 marks] Linearly dependent: $(1-x)^{2}+(1+x)^{2}=2\left(1+x^{2}\right)$. Not spanning.
iii. [5 marks] Linearly dependent. Note for example that

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)-\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right)-\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

Also, not spanning.
2. (a) i. [2 marks] f is not linear. Note e.g. that $f(0,0)=2 x^{2}$ instead of the zero polynomial.
[4 marks] g is linear. Check the two conditions. For any $a_{0}+a_{1} x+a_{2} x^{2}$ and $b_{0}+b_{1} x+b_{2} x^{2} \in P_{2}$ and $\lambda \in \mathbb{R}$:
A. $g\left(\left(a_{0}+a_{1} x+a_{2} x^{2}\right)+\left(b_{0}+b_{1} x+b_{2} x^{2}\right)\right)$
$=g\left(a_{0}+b_{0}+\left(a_{1}+b_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2}\right)=$
$\left(\begin{array}{cc}a_{0}+b_{0} & a_{0}+b_{0}+a_{1}+b_{1}+a_{2}+b_{2} \\ a_{0}+b_{0}+a_{1}+b_{1}+a_{2}+b_{2} & a_{0}+b_{0}+2\left(a_{1}+b_{1}\right)+4\left(a_{2}+b_{2}\right)\end{array}\right)$
$=g\left(a_{0}+a_{1} x+a_{2} x^{2}\right)+g\left(b_{0}+b_{1} x+b_{2} x^{2}\right) ;$
B. $g\left(\lambda\left(a_{0}+a_{1} x+a_{2} x^{2}\right)\right)=g\left(\lambda a_{0}+\lambda a_{1} x+\lambda a_{2} x^{2}\right)$

$$
=\left(\begin{array}{cc}
\lambda a_{0} & \lambda a_{0}+\lambda a_{1}+\lambda a_{2} \\
\lambda a_{0}+\lambda a_{1}+\lambda a_{2} & \lambda a_{0}+2 \lambda a_{1}+4 \lambda a_{2}
\end{array}\right)
$$

$$
=\lambda g\left(a_{0}+a_{1} x+a_{2} x^{2}\right)
$$

ii. [3 marks] h is linear. Check two conditions:

$$
\begin{aligned}
& \text { A. } h\left(M_{1}+M_{2}\right)=\left(M_{1}+M_{2}\right)\binom{1}{0}=M_{1}\binom{1}{0}+M_{2}\binom{1}{0} \\
& \quad=h\left(M_{1}\right)+h\left(M_{2}\right) ; \\
& \text { B. } h(\lambda M)=(\lambda M)\binom{1}{0}=\lambda h(M) .
\end{aligned}
$$

(b) [8 marks] Decompose (x, y, z) in the basis $(1,1,1),(1,2,1)$ and $(1,0,0)$:

$$
(x, y, z)=(-y+2 z)(1,1,1)+(y-z)(1,2,1)+(x-z)(1,0,0)
$$

Then linearity implies $h(x, y, z)=(x+y, y+z, x-z)$.
(c) [8 marks] For any linear map $f: V \rightarrow W$ the rank of f (written $\operatorname{Rank}(f))$ is the dimension of $\operatorname{Img}(f)$ and the nullity of f, written $\operatorname{Null}(f)$, is the dimension of $\operatorname{Ker}(f)$. For the linear map in question, $\operatorname{Ker} h=\{(x,-x, x) \mid x \in \mathbb{R}\}$ with basis $\{(1,-1,1)\}$, for example. Then $\operatorname{Null}(h)=1$. Now $\operatorname{Img} h=\{(a+b, b, a) \mid a, b \in \mathbb{R}\}$ with basis $\{(1,0,1),(1,1,0)\}$ for example, $\operatorname{so} \operatorname{Rank}(h)=2$. The Rank-Nullity Theorem states that

$$
\operatorname{dim}(V)=\operatorname{Rank}(h)+\operatorname{Null}(h)
$$

Because $V=\mathbb{R}^{3}$ has dimension three the Rank-Nullity theorem is satisfied: $3=2+1$.
3. (a) [5 marks] We have $g(1)=1+0=1=1.1+0 x+0 x^{2}, g(x)=$ $1+1=2=2.1+0 x+0 x^{2}$ and $g\left(x^{2}\right)=1+2 x=1.1+2 x+0 x^{2}$. Thus the matrix representing g with respect to the basis $\left\{1, x, x^{2}\right\}$ is given by

$$
A=\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

(b) [10 marks] We have $g(1)=1=1.1+0(1+x)+0\left(1+x+x^{2}\right)$, $g(1+x)=3=3.1+0(1+x)+0\left(1+x+x^{2}\right)$ and $g\left(1+x+x^{2}\right)=$ $4+2 x=2.1+2(1+x)+0\left(1+x+x^{2}\right)$. Thus the matrix representing g with respect to the basis $\left\{1,1+x, 1+x+x^{2}\right\}$ is given by

$$
B=\left(\begin{array}{lll}
1 & 3 & 2 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

(c) [10 marks] We have $1=1.1+0 x+0 x^{2}, 1+x=1.1+1 x+0 x^{2}$ and $1+x+x^{2}=1.1+1 x+1 x^{2}$. Thus the change of basis matrix is given by

$$
P=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

We have

$$
P^{-1}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right)
$$

and we check that

$$
\begin{aligned}
P^{-1} A P & =\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 3 & 2 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)=B
\end{aligned}
$$

as required.
4. (a) [10 marks] The matrix is diagonalisable over \mathbb{R} if and only if there is a basis of \mathbb{R}^{2} consisting of eigenvectors of M with real eigenvalues. The characteristic polynomial of M is $(1-\lambda)^{2}-c$, so the eigenvalues are $\lambda_{ \pm}=1 \pm \sqrt{c}$. Therefore the first requirement for M to be diagonalisable over \mathbb{R} is that $c \geq 0$.
The eigenvector subspace corresponding to λ_{+}is

$$
S_{M}\left(\lambda_{+}\right)=\left\{\mathbf{v} \in \mathbb{R}^{2} \mid\left(M-\lambda_{+}\right) \mathbf{v}=\mathbf{0}\right\}
$$

which for $\mathbf{v}=\left(v_{1}, v_{2}\right)$ requires $v_{2}=\sqrt{c} v_{1}$. Therefore

$$
S_{M}\left(\lambda_{+}\right)=\{(x, \sqrt{c} x) \mid x \in \mathbb{R}\}
$$

generated by $(1, \sqrt{c})$. Similarly

$$
S_{M}\left(\lambda_{-}\right)=\left\{\mathbf{v} \in \mathbb{R}^{2} \mid\left(M-\lambda_{-}\right) \mathbf{v}=\mathbf{0}\right\}=\{(x,-\sqrt{c} x) \mid x \in \mathbb{R}\}
$$

Generated by $(1,-\sqrt{c})$. The matrix M will be diagonalisable if and only if $\{(1, \sqrt{c}),(1,-\sqrt{c})\}$ constitutes a basis, which it will if and only if $c \neq 0$.
In conclusion, M is diagonalisable if and only if $c>0$.
(b) [15 marks] Solving the characteristic equation of the matrix A gives the eigenvalues $\lambda_{1}=\lambda_{2}=-1$ and $\lambda_{3}=5$. The eigenvector subspaces are

$$
\begin{aligned}
S_{A}(-1) & =\{(y-z, y, z) \mid y, z \in \mathbb{R}\} & & \text { with basis }\{(1,1,0),(-1,0,1)\} ; \\
S_{A}(5) & =\{(x, x, 2 x) \mid x \in \mathbb{R}\} & & \text { with basis }\{(1,1,2)\} .
\end{aligned}
$$

Arranging the coordinates of (a choice of) eigenvector basis into columns gives the change of basis matrix P :
$P=\left(\begin{array}{rrr}1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 2\end{array}\right)$ with inverse $P^{-1}=\left(\begin{array}{ccc}-1 / 2 & 3 / 2 & -1 / 2 \\ -1 & 1 & 0 \\ 1 / 2 & -1 / 2 & 1 / 2\end{array}\right)$.
Direct calculation shows that $P^{-1} A P$ is diagonal, with diagonal entries given by $-1,-1,5$.
5. (a) [10 marks] Symmetry and linearity in the two variables is obvious. Positivity is also clear:

$$
\langle\mathbf{x}, \mathbf{x}\rangle=\left(x_{1}+x_{2}\right)^{2}+\left(x_{1}-x_{2}\right)^{2} \geq 0
$$

Also, $\langle\mathbf{x}, \mathbf{x}\rangle=0$ requires $x_{1}-x_{2}=0$ and $x_{1}+x_{2}=0$. Hence $\langle\mathbf{x}, \mathbf{x}\rangle=0$ if and only $\mathbf{x}=\mathbf{0}$. In conclusion, it is an inner product.
(b) [15 marks] Start by defining $\mathbf{w}_{1}=1+x$, which is of norm $\sqrt{3}$ with respect to the stated inner product. Then define

$$
\mathbf{v}_{1}=\frac{1}{\sqrt{3}}(1+x) .
$$

Now take

$$
\begin{aligned}
\mathbf{w}_{2} & =1+\frac{1}{3} x^{2}-\left\langle 1+\frac{1}{3} x^{2}, \mathbf{v}_{1}\right\rangle \mathbf{v}_{1}=1+\frac{1}{3} x^{2}-\frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}}(1+x) \\
& =\frac{1}{3}\left(2-x+x^{2}\right),
\end{aligned}
$$

which is of norm one in the given inner product. Then

$$
\mathbf{v}_{2}=\mathbf{w}_{2} /\left\|\mathbf{w}_{2}\right\|=\frac{1}{3}\left(2-x+x^{2}\right) .
$$

Finally, define

$$
\begin{aligned}
\mathbf{w}_{3} & =\frac{1}{2} x+\frac{1}{3} x^{2}-\left\langle\frac{1}{2} x+\frac{1}{3} x^{2}, \mathbf{v}_{1}\right\rangle \mathbf{v}_{1}-\left\langle\frac{1}{2} x+\frac{1}{3} x^{2}, \mathbf{v}_{2}\right\rangle \mathbf{v}_{2} \\
& =\frac{1}{2} x+\frac{1}{3} x^{2}-\frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}}(1+x)-0=\frac{1}{3}\left(-1+\frac{1}{2} x+x^{2}\right),
\end{aligned}
$$

which has norm $\left\|\mathbf{w}_{3}\right\|=1 / \sqrt{2}$. Then

$$
\mathbf{v}_{3}=\frac{\sqrt{2}}{3}\left(-1+\frac{1}{2} x+x^{2}\right)
$$

In conclusion, the orthonormal basis is

$$
\left\{\frac{1}{\sqrt{3}}(1+x), \quad \frac{1}{3}\left(2-x+x^{2}\right), \quad \frac{\sqrt{2}}{3}\left(-1+\frac{1}{2} x+x^{2}\right)\right\} .
$$

