Geometry \& Vectors

Exercises 3

1) \vec{e}_{v} and \vec{e}_{u} are unit vectors in a Euclidean space. The angle between them is $\pi / 6$. Find the constant λ such that the vector $\lambda \vec{e}_{v}-\vec{e}_{u}$ is perpendicular to \vec{e}_{u}.
2) The vectors $\vec{\imath}, \vec{\jmath}, \vec{k}$ constitute an orthonormal basis. Compute the projection of the vector $\vec{u}=2 \vec{\imath}+\vec{\jmath}-\vec{k}$ onto the vector $\vec{v}=3 \vec{\imath}+10 \vec{\jmath}+\vec{k}$.
3) The vectors $\vec{\imath}, \vec{\jmath}, \vec{k}$ constitute an orthonormal basis. Given are the two vectors

$$
\vec{u}=5 \vec{\imath}+2 \vec{\jmath}-4 \vec{k} \quad \text { and } \quad \vec{v}=\frac{4}{5} \vec{\imath}-2 \vec{\jmath}+\gamma \vec{k} \quad \text { with } \gamma \in \mathbf{R} .
$$

Fix the constant γ such that the angle between the vectors \vec{u} and \vec{v} is $\pi / 3$.
4) Consider the triangle $O A B$, where O is the origin and $A=(3,6,-2)$ and $B=(4,-1,3)$. Use the scalar product of the relevant position vectors to determine all three angles in the triangle OAB .
5) Derive the following trigonometric identities by using vectors only:
i) The cosine rule for the sum of two angles

$$
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta
$$

ii) The cosine rule for a triangle ABC

$$
\begin{equation*}
|\overrightarrow{A C}|^{2}=|\overrightarrow{A B}|^{2}+|\overrightarrow{B C}|^{2}-2|\overrightarrow{A B}||\overrightarrow{B C}| \cos (\widehat{A B C}) \tag{1}
\end{equation*}
$$

iii) By assuming the identity $\sin ^{2} \varphi+\cos ^{2} \varphi=1$ deduce from (1) the sine rule for the triangle ABC

$$
\begin{equation*}
\sin (\widehat{A B C})=\frac{2 \sqrt{s(s-\overrightarrow{A B} \mid)(s-|\overrightarrow{B C}|)(s-|\overrightarrow{A C}|)}}{\overrightarrow{|\overrightarrow{A B}||\overrightarrow{B C}|}} \tag{2}
\end{equation*}
$$

where $s=(|\overrightarrow{A B}|+|\overrightarrow{B C}|+|\overrightarrow{A C}|) / 2$ denotes the semiperimiter.
iv) When given all three length of the sides of a triangle, can one use both equations (1) or (2) to determine the angles uniquely?
6) ABCD constitutes a parallelogram. E is a point on the diaogonal BD such that $\mathrm{BE}=2 / 3 \mathrm{BD}$ and F is the midpoint of the side DC . Show that

$$
\overrightarrow{E F}=\frac{1}{6}(2 \overrightarrow{A C}-\overrightarrow{A B})
$$

7) Compute the work (in standard units) needed to move an object from a point $A=$ $(-4,3,-1)$ to a point $B(1,11,2)$ when applying a force $\vec{F}=5 \vec{\imath}+2 \vec{\jmath}-4 \vec{k}$.

Solutons exercises 3

1) $\lambda=2 / \sqrt{3}$
2) $\vec{u} \cdot \vec{e}_{v}=15 / \sqrt{115}$
3) $\gamma=-6 \sqrt{29 / 95}$
4) $\widehat{A O B}=90^{\circ}$, $\widehat{O A B}=36.07^{\circ}, \widehat{O B B}=53.93^{\circ}$
5) i) Analogous to lecture for $\cos (\alpha-\beta)$.
ii) Expand the dot product.
iii) $\sin ^{2} \varphi+\cos ^{2} \varphi=1 \rightarrow \sin \varphi=\sqrt{1-\cos ^{2} \varphi}$. Then factorise the expression under the square root.
iv) (2) gives ambiguous results as $\sin \varphi=\sin (\pi-\varphi)$.
6) $W=29$.
