
Solutions Complex Variable

All the questions cover standard material seen in the lectures and/or
in the coursework. Only minor changes have been made compared to seen
examples.

1. (a) (seen) Let f be analytic inside and on a closed simple contour C
(oriented positively) that encloses the point z0 then

f (n)(z0) =
n!

2πi

∮

C

f(z)

(z − z0)n+1
dz, n = 0, 1, 2, . . .

[2]

(b) (unseen) Each time, we use Cauchy’s integral formula for an appro-
priate function and an appropriate contour.

i. The first task is to identify the singularities of the function we
want to integrate. They are located at the solutions of the equa-
tion z3 +1 = 0. So we solve z3 = −1 using the standard method
of polar form. Setting z = reiθ with r > 0 and −1 = eiπ we ob-
tain r3 = 1 so r = 1 and 3θ = π+ 2nπ, n ∈ Z. Keeping only the
three distinct solutions corresponding for instance to θ = π/3,
θ = −π/3 and θ = π we get

z1 = ei
π
3 , z2 = e−iπ

3 , z3 = −1 .

[3]
Only z3 is in the given contour so we use Cauchy’s integral for-
mula for z0 = −1, f(z) = 3−z

z2−z+1
and n = 0 to get

∮

C

1− 2z

1 + z3
dz = 2iπf(−1) =

8iπ

3
.

[3]

ii. For this case, the only singularity is z = π
6
and it is inside the

contour. Given the power of the denominator, we see that we
can use Cauchy’s integral formula for the second derivative of
the function f(z) = sin z which is entire. [2]
So we get

∮

C

sin z

(z − π
6
)3
dz =

2iπ

2!

d2

dz2
(sin z)|z=π

6
= −i

π

2
.

[4]
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iii. In this case, there are two singularities z1 =
π
4
and z2 =

π
2
. But

only z1 lies inside the given contour. We use Cauchy’s integral
formula for z0 =

π
4
, f(z) = sin z

z−π
2

2
and n = 0 [2]

∮

C

sin z

(z − π
4
)(z − π

2
)2
dz = 2iπ

(

sin z

(z − π
2
)2

)

z=π
4

=
16i

√
2

π
.

[4]

Remark: the use of the residue theorem is also accepted although
the very first question gives a clear indication that Cauchy’s integral
formula works well here.

2. (unseen)

Let u(x, y) = x2 − y2 + ey cosx for all x, y ∈ R.

(a) We compute

ux(x, y) = 2x− ey sin x , uxx(x, y) = 2− ey cosx ,

and

uy(x, y) = −2y + ey cosx , uyy(x, y) = −2 + ey cos x .

So uxx + uyy = 0 for all x, y ∈ R. [4]

(b) Define the function v by vy = ux and vx = −uy for all x, y ∈ R and
v(0, 0) = 0. Find v. We solve the given partial differential equations
for v. They read

{

vy = 2x− ey sin x ,

vx = 2y − ey cosx .

[2]

The first equation yields

v(x, y) = 2xy − ey sin x+ g(x) ,

where g is some function of x only. We determine it by inserting in
the second equation which reduces to

g′(x) = 0 .

So g is a constant, say C, and

v(x, y) = 2xy − ey sin x+ C .
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Now using v(0, 0) = 0 yields C = 0. So finally,

v(x, y) = 2xy − ey sin x .

[8]

(c) The function whose real and imaginary parts are u and v reads

f(x, y) = x2 − y2 + ey cosx+ i(2xy − ey sin x) = (x+ iy)2 + ey−ix .

By construction of v, we see that u and v satisfy the Cauchy-Riemann
equations ux = vy and uy = −vx for all (x, y) ∈ R2. And the partial
derivatives ux, uy, vx, vy are continuous for all (x, y) ∈ R2. So f is
analytic everywhere. It is an entire function. In terms of z = x+ iy,
we get

f(z) = z2 + e−iz .

Written in this form, it is now easy to see that f is indeed an entire
function.

[6]

3. (unseen)

(a) We use the change of variables discussed in the lectures z = eiθ.
Then cos θ = 1

2
(z + 1

z
), sin θ = 1

2i
(z − 1

z
) and dθ = dz

iz
. Inserting, The

integral becomes the following contour integral in z along the unit
circle C0

I =

∮

C0

2

(−1 − i)z2 + 2iz − 1 + i
dz ,

which can be computed using the residue theorem. [3]

The poles of the function are

z± =
i± i

√
3

1 + i
.

[3]

z− has modulus strictly less than 1 and z+ has modulus strictly
greater than 1 (compute them directly!). So only the residue at
z = z− contributes and we get

I = 2iπ
2

(−1− i)(z− − z+)
.

Now z− − z+ = −2i
√
3

1+i
so

I =
2π√
3
.

[4]
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(b) The standard method for this type of integral is to defined f(z) = 1
i+z3

and to integrate it on the closed contour made of the line segment
[−R,R] and the semi-circle CR = {z ∈ C, z = Reiθ, 0 ≤ θ ≤ π} in
the limit R → ∞. Since zf(z) tends to 0 as z tends to ∞, we know
that the integral along CR tends to 0. [1]

Now the poles of f that are inside the contour are all the poles
in the upper-half plane. The poles of f are obtained by solving
i + z3 = 0. Using the usual method involving polar forms z = ρeiθ

and −i = e−iπ
2 . We obtain the general solution

z = ei
(4q−1)π

6 , q ∈ Z .

So the 3 distinct poles of f are zq = ei
(4q−1)π

6 with q = 0, 1, 2. [3]

Among these, only the one with q = 1 is inside the contour. Finally,
all the poles are simple for we can use the simple formula seen in
the lectures for rational fractions. It takes the form Res(f, zq) =

1
d
dz

(i+z3)

∣

∣

∣

z=zq

= 1
3z2q

here. So using the residue theorem we get, putting

everything together

J = 2iπRes(f, z1) =
2iπ

3eiπ
= −2iπ

3
.

[6]

4. (unseen) In this question, we compute

F (k) =

∫ ∞

−∞
f(x) eikx , k ∈ R

where f(x) = x
4+x2 .

(a) The idea is to integrate the function f(z) = z
4+z2

around the usual
semi-circle contour of radius R and then send R to infinity. The
relevant lemma here ensuring that the contribution to the integral
on the semi-circle vanishes is Jordan’s lemma. [1]

The actual choice of the semi-circle, either in the upper or lower half-
plane depends on the sign of k. First, if k = 0 then F (0) = 0 since
the integrand is an odd function. [2]

If k > 0, we choose the same contour as in the previous question. If
k < 0, we choose the contour made of the line segment [−R,R] and
the semi-circle CR = {z ∈ C, z = Reiθ,−2π ≤ θ ≤ −π} (careful with
the orientation!). [1]
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The poles of f are given by 4 + z2 = 0. We obtain two simple poles
z0 = 2i and z1 = −2i. When k > 0, only z0 contributes. When
k < 0, only z1 contributes. [2]

(b) Using the residue theorem in view of all the information in the first
part, we get, for k > 0

F (k) = 2iπRes(f, z0) = 2iπ
eikz0

2
= iπe−2k .

For k < 0,

F (k) = −2iπRes(f, z1) = −2iπ
eikz1

2
= −iπe2k .

Summarizing,

F (k) =











iπe−2k , k > 0 ,

0 , k = 0 ,

−iπe2k , k < 0 .

In particular, F (−k) = −F (k), which is consistent in view of the
parity of f .

[12]

(c) The value of
∫ ∞

−∞
f(x) cos(kx) dx

coincides with the real part of F (k) so is zero. [2]

In fact, this could have been seen directly from the parity of f and
that of cos.
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