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Time allowed: 2 hours

Full marks may be obtained for correct answers to

THREE of the FOUR questions.

If more than THREE questions are answered,

the best THREE marks will be credited.
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1. (a) State Cauchy’s integral formula together with the conditions required
for it to hold.

(b) Evaluate the following integrals

i. ∮
C

1− 2z

1 + z3
dz

where C is the rectangle with opposite corners at ±(2 + i

4
).

ii. ∮
C

sin z

(z − π

4
)3
dz

where C is the unit circle.

iii. ∮
C

sin z

(z − π

4
)2(z − π

2
)
dz

where C is the unit circle.

2. Let f be defined by

f(z) =
2

z2 − (2i+ 4)z + 8i
.

(a) Find the poles of f . Call them z1 and z2 such that |z1| < |z2|.

(b) Give the series expansion of f in the following three regions, stating
in each case if it is a Taylor or Laurent series.

i. |z| < |z1|.

ii. |z1| < |z| < |z2|.

iii. |z − z1| < |z2 − z1|.

3. Explaining your method, compute

(a)

I =

∫
2π

0

dθ

cos θ − sin θ − i
.

Simplify your answer until you get a purely imaginary number.
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(b)

J =

∫
∞

−∞

dx

i+ x5
.

Simplify your answer until you get a purely imaginary number.

4. In this question, we compute

F (k) =

∫
∞

−∞

f(x) eikx , k ∈ R ,

where f(x) = x

1+x4 .

(a) Describe the contour that should be used to compute this integral
(paying attention to the various cases) and state the relevant lemma.
Find the poles of f and discuss their contributions in the various
cases.

(b) Find F (k).

(c) Deduce the value of

∫
∞

−∞

f(x) cos(kx) dx , k ∈ R .
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