City University
 London

MA2600: Complex analysis set task

1. Using Cauchy's integral formula, evaluate

$$
J=\oint_{C} \frac{\cos 2 z}{z^{2}\left(z^{2}-z+1\right)} d z
$$

where C is the circle of radius 2 centered at the origin. (Please present your answer in the form $J=A \cos \left(2 z_{+}\right)+B \cos \left(2 z_{-}\right)+C$ where $A, B, C, z_{ \pm}$should be found.)
2. Let f be defined by

$$
f(z)=\frac{2}{z^{2}-(4+i) z+4 i}
$$

(a) Find the poles z_{1} and z_{2} of f such that $\left|z_{1}\right|<\left|z_{2}\right|$.
(b) Give the series expansion of f in the following three regions, stating in each case if it is a Taylor or Laurent series.
i. $|z|<\left|z_{1}\right|$.
ii. $\left|z_{1}\right|<|z|<\left|z_{2}\right|$.
iii. $\left|z-z_{1}\right|<\left|z_{2}-z_{1}\right|$.
3. Explaining your method, compute
(a)

$$
I=\int_{0}^{2 \pi} \frac{d \theta}{2 i \cos \theta+2 i \sin \theta+1}
$$

(b)

$$
J=\int_{-\infty}^{\infty} \frac{x^{2} d x}{1+x^{6}}
$$

For the integral J, simplify your answer until you get an expression involving real numbers only.

