CITY UNIVERSITY

London

BSc Honours Degree in Mathematical Science
Mathematical Science with Statistics
Mathematical Science with Computer Science
Mathematical Science with Finance and Economics
Mathematics and Finance

Part 2

Mathematical Methods

2011

Time allowed: 3 hours

Full marks may be obtained for correct answers to FIVE out of the SEVEN questions.
All necessary working must be shown.

1. Let f be the 2π periodic function defined on $[-\pi, \pi)$ by

$$
f(x)=\sin \frac{x}{4} .
$$

(a) Find the Fourier coefficients of f.
(b) Show that for all $x \in(-\pi, \pi)$,

$$
\sin \frac{x}{4}=\sum_{n=1}^{\infty} \frac{(-1)^{n} 16 n \sqrt{2}}{\pi\left(1-16 n^{2}\right)} \sin n x .
$$

(c) State Parseval's theorem and use it to prove

$$
\frac{\pi^{2}}{512}\left(1-\frac{2}{\pi}\right)=\sum_{n=1}^{\infty} \frac{n^{2}}{\left(1-16 n^{2}\right)^{2}}
$$

2. Consider the surface of that part of the cone $4 y^{2}=x^{2}+z^{2}$ which lies inside the cylinder $x^{2}+z^{2}=x$.
(a) Giving reasons, choose which of the following parametrizations is appropriate for this surface

$$
\begin{aligned}
\vec{F}_{ \pm}:[0,1] \times\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] & \rightarrow \mathbb{R}^{3} \\
(\rho, \theta) & \mapsto \rho \cos \theta \vec{i}+\rho \sin \theta \vec{j} \pm \frac{\rho}{2} \vec{k} \\
\vec{G}_{ \pm}:[0, \cos \theta] \times\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] & \rightarrow \mathbb{R}^{3} \\
(\rho, \theta) & \mapsto 2 \cos \theta \vec{i}+2 \sin \theta \vec{j} \pm \frac{\rho}{2} \vec{k} \\
\vec{H}_{ \pm}: \quad[0, \cos \theta] \times\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] & \rightarrow \mathbb{R}^{3} \\
(\rho, \theta) & \mapsto \rho \cos \theta \vec{i} \pm \frac{\rho}{2} \vec{j}+\rho \sin \theta \vec{k}
\end{aligned}
$$

where the subscript \pm refers to the two symmetric parts of the surface.
(b) Using the previous parametrization, show that the surface area is

$$
S=\frac{\pi \sqrt{5}}{4}
$$

3. (a) Using cylindrical coordinates, show that a parametrization of the closed curve C which is the intersection of the paraboloid $-2 z=$ $x^{2}+y^{2}$ with the plane $y=z$ is

$$
\vec{r}(\theta)=-\sin 2 \theta \vec{i}-2 \sin ^{2} \theta(\vec{j}+\vec{k}) \quad, \quad \theta \in[0, \pi] .
$$

(Discuss carefully the range for θ.)
(b) Let $\vec{V}(x, y, z)=x \vec{i}+(1+y) \vec{j}$ be a vector field. Compute the line integral

$$
I=\int_{C} \vec{V} \cdot d \vec{r}
$$

(c) Show that $\vec{V}=\vec{\nabla} \phi$ for a scalar field ϕ that you should find. Hence, deduce the value of I and check it against your previous result.
4. Let $\vec{V}(x, y, z)=x \vec{i}+y \vec{j}+z \vec{k}$ be a vector field. Let S be the surface of the cylinder $(x-2)^{2}+\frac{(y-1)^{2}}{3}=1$ between the $z=0$ plane and the plane $y+4 z=6$.
(a) Compute $\vec{\nabla} \cdot \vec{V}$.
(b) Giving reasons, choose which of the following parametrizations describes the volume inside the cylinder and the two planes.

$$
\left.\left.\begin{array}{rl}
\vec{F}: & {[0,1] \times[0,2 \pi] \times\left[0, z_{0}(\rho, \theta)\right] \rightarrow \mathbb{R}^{3}} \\
& (\rho, \theta, z)
\end{array}\right)(2+\rho \cos \theta) \vec{i}+(1+\sqrt{3} \rho \sin \theta) \vec{j}+z \vec{k}\right) ~ l
$$

where $z_{0}(\rho, \theta)=\frac{1}{4}(5-\sqrt{3} \rho \sin \theta)$.

$$
\begin{aligned}
\vec{G}: & {[0,1] \times[0,2 \pi] \times\left[0, \rho^{2}\right] \rightarrow \mathbb{R}^{3} } \\
& (\rho, \theta, z) \mapsto(2+\rho \cos \theta) \vec{i}+(1+\sqrt{3} \rho \sin \theta) \vec{j}+z \vec{k}
\end{aligned}
$$

$$
\begin{aligned}
\vec{H}:[0, \sqrt{3}] \times[0,2 \pi] & \rightarrow \mathbb{R}^{3} \\
(\rho, \theta) & \mapsto \rho \cos \theta \vec{i}+\rho \sin \theta \vec{j}+\rho^{2} \vec{k}
\end{aligned}
$$

(c) Show that the surface integral

$$
I=\iint_{S} \vec{V} \cdot \overrightarrow{d S}
$$

equals $\frac{15 \pi \sqrt{3}}{4}$.
5. Define $\gamma=\alpha+2 i$ and let

$$
f(z)=(\gamma z+\bar{\gamma} \bar{z})^{2}+2 i(\bar{\gamma} z+\gamma \bar{z})
$$

where \bar{z} (respectively $\bar{\gamma}$) is the complex conjugate of z (respectively γ).
(a) Find the real and imaginary parts of f in terms of α, x and y where $z=x+i y$.
(b) For which values of α is f differentiable? For these values, find where it is differentiable.
(c) Is f analytic anywhere?
6. Let f be defined by

$$
f(z)=\frac{1}{3 z^{2}+(1-6 i) z-2 i} .
$$

(a) Find the poles z_{1} and z_{2} of f such that $\left|z_{1}\right|<\left|z_{2}\right|$. (Simplify your answer as much as possible to obtain the poles in the form $a+i b$ where a and b are rational numbers only).
(b) Give the series expansion of f in the following three regions, stating in each case if it is a Taylor or Laurent series.
i. $|z|<\left|z_{1}\right|$.
ii. $\left|z_{1}\right|<|z|<\left|z_{2}\right|$.
iii. $\left|z-z_{1}\right|<\left|z_{2}-z_{1}\right|$.
7. (a) Explaining your method, compute

$$
J_{1}=\int_{-\infty}^{\infty} \frac{d x}{1+x^{4}}
$$

and

$$
J_{2}=\int_{-\infty}^{\infty} \frac{x^{2} d x}{1+x^{4}}
$$

Simplify your answer until you get an expression involving real numbers only.
(b) Deduce the value of

$$
J=\int_{-\infty}^{\infty} \frac{x^{3}+x^{2}+x+1}{1+x^{4}} d x .
$$

