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1. Let f be the 2π periodic function defined on [−π, π) by

f(x) = sin
x

2
.

(a) Find the Fourier coefficients of f .

(b) Show that for all x ∈ (−π, π),

sin
x

2
=

8

π

∞∑
n=1

(−1)nn

1 − 4n2
sin nx .

(c) By considering the point x = π
2
, deduce that

∞∑
p=0

(−1)p+1(2p + 1)

1 − 4(2p + 1)2
=

π

8
√

2
.

[20]

2. Consider the surface of that part of the cone y2 = x2 +z2 which lies inside
the cylinder x2 + z2 = 2x.

(a) Giving reasons, choose which of the following parametrizations is
appropriate for this surface

−→
F ± [0, 2] × [−π

2
, π

2
] → R3

(ρ, θ) 7→ ρ cos θ~i + ρ sin θ~j ± ρ~k

−→
G± [0, 2 cos θ] × [−π

2
, π

2
] → R3

(ρ, θ) 7→ ρ cos θ~i ± ρ~j + ρ sin θ~k

−→
H± [0, 2 cos θ] × [−π

2
, π

2
] → R3

(ρ, θ) 7→ cos θ~i + sin θ~j ± ρ~k

where the subscript ± refers to the two symmetric parts of the sur-
face.

(b) Using the previous parametrization, show that the surface area is

S = 2π
√

2 .
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3. (a) Using cylindrical coordinates, show that a parametrization of the
closed curve C which is the intersection of the paraboloid 4z = x2+y2

with the plane y = z is

~r(θ) = 2 sin 2θ~i + 4 sin2 θ (~j + ~k) , θ ∈ [0, π] .

(b) Let
−→
V (x, y, z) = −x

2
~i + (1− y

2
)~j be a vector field. Compute the line

integral

I =

∫
C

−→
V · d~r .

(c) Show that
−→
V =

−→∇φ for a scalar field φ that you should find. Hence,
deduce the value of I and check it against your previous result.

[20]

4. Let
−→
V (x, y, z) = x~i+y~j+z ~k be a vector field. Let S be the surface of the

cylinder (x−1)2

4
+ y2

9
= 1 between the z = 0 plane and the plane 3x−z = 1.

(a) Compute
−→∇ · −→V .

(b) Giving reasons, choose which of the following parametrizations de-
scribes the volume inside the cylinder and the two planes.

−→
F : [0, 1] × [0, 2π] × [0, ρ2] → R3

(ρ, θ, z) 7→ (1 + 2ρ cos θ)~i + (3ρ sin θ)~j + z ~k

−→
G : [0, 6] × [0, 2π] → R3

(ρ, θ) 7→ ρ cos θ~i + ρ sin θ~j + ρ2~k

−→
H : [0, 1] × [0, 2π] × [0, z0(ρ, θ)] → R3

(ρ, θ, z) 7→ (1 + 2ρ cos θ)~i + (3ρ sin θ)~j + z ~k

where z0(ρ, θ) = 6ρ cos θ + 2.

(c) Show that the surface integral

I =

∫∫
S

−→
V · ~dS ,

equals 36π.
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5. Define γ = 3
2

+ iβ, β ∈ R and let

f(z) = (γz + γ̄z̄)2 + 2i(γ̄z + γz̄) ,

where z̄ (respectively γ̄) is the complex conjugate of z (respectively γ).

(a) Find the real and imaginary parts of f in terms of β, x and y where
z = x + iy.

(b) For which values of β is f differentiable? For these values, find where
it is differentiable.

(c) Is f analytic anywhere?

[20]

6. Let f be defined by

f(z) =
1

2z2 − (1 + 2i)z + i
.

(a) Find the poles z1 and z2 of f such that |z1| < |z2|.
(b) Give the series expansion of f in the following three regions, stating

in each case if it is a Taylor or Laurent series.

i. |z| < |z1|.
ii. |z1| < |z| < |z2|.
iii. |z − z1| < |z2 − z1|.

[20]

7. Explaining your method, compute

(a)

I =

∫ 2π

0

dθ

cos θ + 3 sin θ − i
.

(b)

J =

∫
∞

−∞

x2dx

1 + x4
.

For the integral J , simplify your answer until you get an expression
involving real numbers only.
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8. In this question we compute

K =

∫
∞

0

dx

1 + x5
,

using the following contour C made of three pieces

Cx = [0, R]

CR = {z ∈ C, z = R eiθ, 0 ≤ θ ≤ 2π

5
}

CL = {z ∈ C, z = r ei 2π

5 , 0 ≤ r ≤ R}
in the limit R → ∞. (<(z) is the real part of z and =(z) its imaginary
part.)

(a) Sketch the contour. Let f(z) = 1
1+z5 . Identify the pole of f that lies

inside C when R > 1. Call it z0.

(b) Show that

∮
C

f(z) dz =

∫ R

0

dx

1 + x5
+

∫ 2π

5

0

iReiθdθ

1 + R5ei5θ
− ei 2π

5

∫ R

0

dr

1 + r5
.

(c) Given that lim
R→∞

∫ 2π

5

0

iReiθdθ

1 + R5ei5θ
= 0, deduce that

(1 − ei 2π

5 )

∫
∞

0

dx

1 + x5
= 2iπ Res(f, z0) .

Hence find K (simplify your answer until you get an expression in-
volving real numbers only).

[20]

Internal Examiner: Dr V. Caudrelier
External Examiner: ??


