PAPER 87

TURBULENCE

Attempt TWO questions.
There are $\boldsymbol{T H R E E}$ questions in total.
The questions carry equal weight.

STATIONERY REQUIREMENTS
Cover sheet Treasury Tag
Script paper

SPECIAL REQUIREMENTS
A data sheet of 3 pages is attached

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (i) Consider homogeneous, isotropic turbulence. Show that, if the two-point correlation $\left\langle\mathbf{u} \cdot \mathbf{u}^{\prime}\right\rangle$ decays sufficiently rapidly with separation $r=|\mathbf{r}|=\left|\mathbf{x}^{\prime}-\mathbf{x}\right|$, then the low-wavenumber end of the energy spectrum takes the form

$$
E(k)=\frac{L k^{2}}{4 \pi^{2}}+\frac{I k^{4}}{24 \pi^{2}}+O\left(k^{6}\right)
$$

where k is the wavenumber and

$$
L=\int\left\langle\mathbf{u} \cdot \mathbf{u}^{\prime}\right\rangle d \mathbf{r}, \quad I=-\int r^{2}\left\langle\mathbf{u} \cdot \mathbf{u}^{\prime}\right\rangle d \mathbf{r}
$$

Express L in terms of the linear momentum in some large volume, V, and use the central limit theorem to argue that, in general, we might expect L to be non-zero. Under what particular conditions might we expect L to be zero?
(ii) The longitudinal triple correlation function, $K(r)$, falls no more slowly than $K_{\infty} \sim a r^{-4}+b r^{-5}+\ldots$, where a and b are constants. Use the Karman-Howarth equation,

$$
\frac{\partial}{\partial t}\left\langle\mathbf{u} \cdot \mathbf{u}^{\prime}\right\rangle=\frac{1}{r^{2}} \frac{\partial}{\partial r} \frac{1}{r} \frac{\partial}{\partial r}\left(r^{4} u^{3} K\right)+2 \nu \nabla^{2}\left\langle\mathbf{u} \cdot \mathbf{u}^{\prime}\right\rangle
$$

to show that

$$
L=\mathrm{constant}, \quad \frac{d I}{d t}=8 \pi\left[r^{4} u^{3} K\right]_{\infty}-12 \nu L
$$

What is the physical interpretation of the conservation of L ?
(iii) Consider the case where all two-point correlations decay exponentially fast for large r. Show that, in such a situation, $L=0$ while I is an invariant, and hence derive Kolmogorov's decay laws. State any assumption which you make.

Use the identity
$(\mathbf{x} \times \mathbf{u}) \cdot\left(\mathbf{x}^{\prime} \times \mathbf{u}^{\prime}\right)+\left(\mathbf{x}^{\prime}-\mathbf{x}\right)^{2}\left(\mathbf{u} \cdot \mathbf{u}^{\prime}\right)=\nabla \cdot\left[\left(\left(\mathrm{x}^{\prime}\right)^{2}-\left(\mathbf{x} \cdot \mathbf{x}^{\prime}\right)\right)\left(\mathbf{x} \cdot \mathbf{u}^{\prime}\right) \mathbf{u}\right]+\nabla^{\prime} \cdot\left[\mathbf{x}^{2}\left(\mathrm{x}^{\prime} \cdot \mathbf{u}\right) \mathbf{u}^{\prime}\right]$
to show that, for turbulence confined to a large, closed domain,

$$
\left\langle\left[\int \mathbf{x} \times \mathbf{u} d V\right]^{2}\right\rangle=-\iint r^{2}\left\langle\mathbf{u} \cdot \mathbf{u}^{\prime}\right\rangle d \mathbf{x} d \mathbf{x}^{\prime}
$$

How did Landau use this expression to explain the conservation of I in the absence of long-range correlations? What are the weaknesses in Landau's argument?
(iv) Discuss Batchelor and Proudman's objections to the conservation of I. Explain briefly why they expected pressure-velocity correlations of the form $\left\langle u_{x}^{2} p^{\prime}\right\rangle_{\infty}$ to fall off as r^{-3} with separation r ? What is the significance of this for the triple correlations, and hence for I ? Why did these objections appeal to researchers engaged in developing heuristic twopoint closure models? What do recent numerical simulations show regarding I ?

2 (i) There are three canonical problems in passive scalar mixing: Taylor's problem, Richardson's problem, and the Kolmogorov-Obukhov-Corrsin problem. Discuss briefly what each associated theory sets out to achieve, distinguishing clearly among the three problems.
(ii) Consider statistically stationary, homogeneous turbulence. Let $\mathbf{X}(t)$ be the position of a particle released from $\mathbf{x}=0$ at $t=0$, and $\boldsymbol{v}(t)$ the Lagrangian velocity, $\boldsymbol{v}(t)=\mathbf{u}(\mathbf{X}(t), t)$. Show that

$$
\frac{d}{d t}\left\langle\mathbf{X}^{2}\right\rangle=2 \int_{0}^{t}\langle\boldsymbol{v}(t) \cdot \boldsymbol{v}(t-\tau)\rangle d \tau
$$

Let t_{L} be the Lagrangian autocorrelation time, defined by

$$
\left\langle\mathbf{u}^{2}\right\rangle t_{L}=\int_{0}^{\infty}\langle\boldsymbol{v}(t) \cdot \boldsymbol{v}(t-\tau)\rangle d \tau
$$

Show that

$$
\begin{array}{ll}
\left\langle\mathbf{X}^{2}\right\rangle=\left\langle\mathbf{u}^{2}\right\rangle t^{2}, & t \ll t_{L} \\
\left\langle\mathbf{X}^{2}\right\rangle=2\left\langle\mathbf{u}^{2}\right\rangle t_{L} t, & t \gg t_{L}
\end{array}
$$

Give a physical interpretation of the $\left\langle\mathbf{X}^{2}\right\rangle \sim t^{2}$ and $\left\langle\mathbf{X}^{2}\right\rangle \sim t$ behaviour.
(iii) Consider a small cloud of pollutant of characteristic radius R diffusing in a field of homogeneous turbulence. Let ℓ and η be the integral and Kolmogorov scales of the turbulence, and suppose that $\eta \ll R \ll \ell$. Provide an argument to support the estimate

$$
\frac{d R^{2}}{d t} \sim \epsilon^{1 / 3} R^{4 / 3}
$$

where ϵ is the energy dissipation rate. What restrictions apply to this expression? Let $\delta \mathbf{x}$ be the instantaneous separation of two marked particles which are simultaneously released at $t=0$ with initial separation $(\delta \mathbf{x})_{0}$. Show that, if the turbulence is statistically stationary, and $\eta^{2} \ll\left\langle(\delta \mathbf{x})^{2}\right\rangle \ll \ell^{2}$, then

$$
\left\langle(\delta \mathbf{x})^{2}\right\rangle=g \epsilon t^{3},
$$

for some constant g. Why might you expect g to be a universal constant? What do recent experiments and simulations suggest about g ?
(iv) Let $C(\mathbf{x}, t)$ be the concentration field of a passive scalar, and let the datum for C be chosen such that $\langle C\rangle=0$. The passive scalar evolves in a turbulent velocity field, $\mathbf{u}(x, t)$, and both \mathbf{u} and C are statistically isotropic. Consider the structure function

$$
\left\langle(\triangle C)^{2}\right\rangle(r)=\left\langle\left(C^{\prime}-C\right)^{2}\right\rangle,
$$

where $C^{\prime}=C\left(\mathbf{x}^{\prime}\right), C=C(\mathbf{x})$ and $\mathbf{r}=\mathbf{x}^{\prime}-\mathbf{x}$. Show that

$$
\left\langle(\triangle C)^{2}\right\rangle=2\left\langle C^{2}\right\rangle, \quad \text { for } \quad r \rightarrow \infty,
$$

and

$$
\left\langle(\triangle C)^{2}\right\rangle=\frac{1}{3} \epsilon_{c} r^{2} / \alpha, \quad \text { for } \quad r \rightarrow 0
$$

where α is the diffusivity of the scalar and ϵ_{c} the scalar dissipation rate. We wish to determine $\left\langle(\triangle C)^{2}\right\rangle$ for intermediate r.

Show that

$$
\left\langle(\triangle C)^{2}\right\rangle \sim \epsilon_{c} \epsilon^{-1 / 3} r^{2 / 3}, \quad \hat{\eta} \ll r \ll \ell
$$

where $\hat{\eta}=\max \left(\eta, \eta_{c}\right)$ and η_{c} is the scalar microscale. State any assumptions that you make.

Consider the case of a weakly diffusive scalar, where $\alpha \ll \nu$ and $\eta_{c} \ll \eta$. In the viscous-convective range, $\eta_{c} \ll r \ll \eta$, the scalar is teased out by Kolmogorov sized eddies. Argue that $\frac{d}{d r}\left\langle(\triangle C)^{2}\right\rangle$ depends only on ϵ_{c}, r and the strain-rate of these eddies and hence show that, in this range

$$
\left\langle(\triangle C)^{2}\right\rangle \sim \epsilon_{c} \sqrt{\frac{\nu}{\epsilon}} \ln \left(\frac{r}{\eta_{c}}\right) .
$$

Why must we use $\frac{d}{d r}\left\langle(\triangle C)^{2}\right\rangle$, rather than $\left\langle(\triangle C)^{2}\right\rangle$, in the development of this argument?
In the case of a highly diffusive scalar, $\alpha \gg \nu$, we have $\eta_{c} \gg \eta$. What is the form of $\left\langle(\triangle C)^{2}\right\rangle$ in the inertial-diffusive range, $\eta \ll r \ll \eta_{c}$?

3 (i) Discuss how the second-order structure function, $\left\langle(\Delta v)^{2}\right\rangle(r)$, acts like a filter, distinguishing between the energy held above and below scale r. Explain the origin of the common, if simplistic, estimate

$$
\frac{3}{4}\left\langle(\triangle v)^{2}\right\rangle(r) \sim \int_{\pi / r}^{\infty} E(k) d k
$$

(ii) Consider Kolmogorov's 1941 theory of the small scales. State Kolmogorov's first similarity hypothesis and deduce the associated forms of $\left\langle(\triangle v)^{2}\right\rangle$ and $E(k)$ in the universal equilibrium range. State Kolmogorov's second similarity hypothesis. What form does this impose on $\left\langle(\Delta v)^{2}\right\rangle$ and $E(k)$ in the inertial range?
(iii) Show that the exact relationship between $\left\langle(\Delta v)^{2}\right\rangle$ and $E(k)$ is

$$
\frac{3}{4}\left\langle(\triangle v)^{2}\right\rangle(r)=\int_{0}^{\infty} E(k) H(k r) d k
$$

where

$$
H(x)=1+3 x^{-2} \cos x-3 x^{-3} \sin x .
$$

Given that a good approximation to $H(x)$ is

$$
\begin{array}{ll}
H(x) \approx(x / \pi)^{2}, & x<\pi \\
H(x) \approx 1, & x \geqslant \pi
\end{array}
$$

confirm that

$$
\frac{3}{4}\left\langle(\Delta v)^{2}\right\rangle \approx \int_{\pi / r}^{\infty} E(k) d k+\frac{r^{2}}{\pi^{2}} \int_{0}^{\pi / r} k^{2} E(k) d k
$$

Explain the physical origin of the second term on the right. It appears that $\left\langle(\Delta v)^{2}\right\rangle$ mixes information from different scales, and information about energy and enstrophy. Why does this pose a problem for Kolmogorov's two-thirds law?
(iv) Explain the basis of Kolmogorov's refined similarity hypothesis and show that it demands

$$
\left\langle(\Delta v)^{p}\right\rangle=\beta_{p}\left\langle\epsilon_{A V}^{p / 3}(r)\right\rangle r^{p / 3},
$$

where p is an integer, $\epsilon_{A V}$ is the dissipation averaged over scale r and β_{p} are universal constants. Explain briefly how Kolmogorov used this expression to estimate the scaling exponent ζ_{p} in the expression $\left\langle(\Delta v)^{p}\right\rangle \sim r^{\zeta p}$.
(v) Construct an argument which suggests that, like $\left\langle(\Delta v)^{2}\right\rangle$, higher-order structure functions mix information from different scales. What is the implication of this for the 1962 theory?

END OF PAPER

