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1 (i) Consider homogeneous, isotropic turbulence. Show that, if the two-point
correlation 〈u · u′〉 decays sufficiently rapidly with separation r = | r | = |x′ − x | , then
the low-wavenumber end of the energy spectrum takes the form

E(k) =
Lk2

4π2
+

Ik4

24π2
+ O(k6) ,

where k is the wavenumber and

L =
∫
〈u · u′〉 dr , I = −

∫
r2〈u · u′〉 dr .

Express L in terms of the linear momentum in some large volume, V , and use the central
limit theorem to argue that, in general, we might expect L to be non-zero. Under what
particular conditions might we expect L to be zero?

(ii) The longitudinal triple correlation function, K(r), falls no more slowly than
K∞ ∼ ar−4+br−5+. . . , where a and b are constants. Use the Karman–Howarth equation,

∂

∂t
〈u · u′〉 =

1
r2

∂

∂r

1
r

∂

∂r

(
r4u3K

)
+ 2 ν∇2〈u · u′〉 ,

to show that
L = constant ,

dI

dt
= 8π

[
r4u3K

]
∞ − 12νL .

What is the physical interpretation of the conservation of L?

(iii) Consider the case where all two-point correlations decay exponentially fast for
large r . Show that, in such a situation, L = 0 while I is an invariant, and hence derive
Kolmogorov’s decay laws. State any assumption which you make.

Use the identity

(x×u) ·(x′×u′)+(x′−x)2(u ·u′) = ∇·
[(

(x′)2 − (x · x′)
)

(x · u′) u
]

+ ∇′ ·
[
x2 (x′ · u) u′

]
to show that, for turbulence confined to a large, closed domain,

〈
[ ∫

x× udV
]2
〉 = −

∫ ∫
r2〈u · u′〉 dx dx′ .

How did Landau use this expression to explain the conservation of I in the absence of
long-range correlations? What are the weaknesses in Landau’s argument?

(iv) Discuss Batchelor and Proudman’s objections to the conservation of I . Explain
briefly why they expected pressure-velocity correlations of the form 〈u2

xp
′〉∞ to fall off as

r−3 with separation r? What is the significance of this for the triple correlations, and hence
for I? Why did these objections appeal to researchers engaged in developing heuristic two-
point closure models? What do recent numerical simulations show regarding I?
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2 (i) There are three canonical problems in passive scalar mixing: Taylor’s problem,
Richardson’s problem, and the Kolmogorov-Obukhov-Corrsin problem. Discuss briefly
what each associated theory sets out to achieve, distinguishing clearly among the three
problems.

(ii) Consider statistically stationary, homogeneous turbulence. Let X(t) be the
position of a particle released from x = 0 at t = 0 , and υ(t) the Lagrangian velocity,
υ(t) = u(X(t), t) . Show that

d

dt
〈X2〉 = 2

∫ t

0

〈υ(t) · υ(t− τ)〉 dτ .

Let tL be the Lagrangian autocorrelation time, defined by

〈u2〉tL =
∫ ∞

0

〈υ(t) · υ(t− τ)〉 dτ .

Show that
〈X2〉 = 〈u2〉t2, t � tL ,

〈X2〉 = 2〈u2〉tLt , t � tL .

Give a physical interpretation of the 〈X2〉 ∼ t2 and 〈X2〉 ∼ t behaviour.

(iii) Consider a small cloud of pollutant of characteristic radius R diffusing in a
field of homogeneous turbulence. Let ` and η be the integral and Kolmogorov scales of the
turbulence, and suppose that η � R� ` . Provide an argument to support the estimate

dR2

dt
∼ ε1/3R 4/3 ,

where ε is the energy dissipation rate. What restrictions apply to this expression? Let
δx be the instantaneous separation of two marked particles which are simultaneously
released at t = 0 with initial separation (δx)0 . Show that, if the turbulence is statistically
stationary, and η2 � 〈(δx)2〉 � `2, then

〈(δx)2〉 = g ε t3 ,

for some constant g . Why might you expect g to be a universal constant? What do recent
experiments and simulations suggest about g?
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(iv) Let C(x, t) be the concentration field of a passive scalar, and let the datum for
C be chosen such that 〈C〉 = 0 . The passive scalar evolves in a turbulent velocity field,
u(x, t), and both u and C are statistically isotropic. Consider the structure function

〈(4C)2〉(r) = 〈(C ′ − C)2〉 ,

where C ′ = C(x′), C = C(x) and r = x′ − x . Show that

〈(4C)2〉 = 2〈C2〉 , for r → ∞ ,

and
〈(4C)2〉 =

1
3
εcr

2/α , for r → 0 ,

where α is the diffusivity of the scalar and εc the scalar dissipation rate. We wish to
determine 〈(4C)2〉 for intermediate r .

Show that
〈(4C)2〉 ∼ εcε

−1/3 r 2/3 , η̂ � r � ` ,

where η̂ = max (η, ηc) and ηc is the scalar microscale. State any assumptions that you
make.

Consider the case of a weakly diffusive scalar, where α � ν and ηc � η . In the
viscous-convective range, ηc � r � η , the scalar is teased out by Kolmogorov sized eddies.
Argue that d

dr 〈(4C)2〉 depends only on εc, r and the strain-rate of these eddies and hence
show that, in this range

〈(4C)2〉 ∼ εc

√
ν

ε
`n

(
r

ηc

)
.

Why must we use d
dr 〈(4C)2〉, rather than 〈(4C)2〉, in the development of this argument?

In the case of a highly diffusive scalar, α � ν , we have ηc � η . What is the form of
〈(4C)2〉 in the inertial-diffusive range, η � r � ηc?
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3 (i) Discuss how the second-order structure function, 〈(4v)2〉(r), acts like a filter,
distinguishing between the energy held above and below scale r . Explain the origin of the
common, if simplistic, estimate

3
4
〈(4v)2〉(r) ∼

∫ ∞
π/r

E(k) dk .

(ii) Consider Kolmogorov’s 1941 theory of the small scales. State Kolmogorov’s
first similarity hypothesis and deduce the associated forms of 〈(4v)2〉 and E(k) in the
universal equilibrium range. State Kolmogorov’s second similarity hypothesis. What form
does this impose on 〈(4v)2〉 and E(k) in the inertial range?

(iii) Show that the exact relationship between 〈(4v)2〉 and E(k) is

3
4
〈(4v)2〉(r) =

∫ ∞
0

E(k)H(kr) dk ,

where
H(x) = 1 + 3x−2 cosx− 3x−3 sinx .

Given that a good approximation to H(x) is

H(x) ≈ (x/π)2, x < π

H(x) ≈ 1 , x > π ,

confirm that
3
4
〈(4v)2〉 ≈

∫ ∞
π/r

E(k) dk +
r2

π2

∫ π/r

0

k2E(k) dk .

Explain the physical origin of the second term on the right. It appears that 〈(4v)2〉 mixes
information from different scales, and information about energy and enstrophy. Why does
this pose a problem for Kolmogorov’s two-thirds law?

(iv) Explain the basis of Kolmogorov’s refined similarity hypothesis and show that
it demands

〈(4v)p〉 = βp〈ε p/3AV (r)〉 r p/3 ,

where p is an integer, εAV is the dissipation averaged over scale r and βp are universal
constants. Explain briefly how Kolmogorov used this expression to estimate the scaling
exponent ζp in the expression 〈(4v)p〉 ∼ rζp.

(v) Construct an argument which suggests that, like 〈(4v)2〉, higher-order structure
functions mix information from different scales. What is the implication of this for the
1962 theory?
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