

## MATHEMATICAL TRIPOS Part III

Thursday 30 May 2002 9 to 12

## PAPER 12

## TORIC VARIETIES

Attempt **THREE** questions There are **four** questions in total The questions carry equal weight

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.



1 Let  $N \cong \mathbb{Z}^n$  denote a lattice and  $\sigma \subset N_{\mathbb{R}} = N \otimes \mathbb{R}$  a rational polyhedral cone with a vertex. Show that there is an order reversing bijection between the faces of  $\sigma$  and those of the dual cone  $\check{\sigma} \subset M_{\mathbb{R}} = M \otimes \mathbb{R}$ , where M denotes the dual lattice to N.

 $\mathbf{2}$ 

Given a face  $\tau = \sigma \cap \mu^{\perp}$  of  $\sigma$  ( $\mu \in M \cap \check{\sigma}$ ), show that  $X_{\check{\tau}}$  is an open subvariety of  $X_{\check{\sigma}}$ . Prove that  $X_{\check{\sigma}} \setminus X_{\check{\tau}}$  is the union of closed subvarieties  $X_{\gamma}$ , for  $\gamma$  ranging over faces of  $\check{\sigma}$  not containing  $\mu$ . For faces  $\tau_1, \tau_2$  of  $\sigma$ , show that

$$X_{(\tau_1 \cap \tau_2)} = X_{\check{\tau}_1} \cap X_{\check{\tau}_2}.$$

Suppose now that  $\Sigma$  is a fan in  $N_{\mathbf{R}}$ , with corresponding toric variety  $X_{\Sigma}$ . For  $\tau \in \Sigma$ , define the closed subvariety  $F_{\tau}$  of  $X_{\Sigma}$  as the closure of the subset  $X_{\tau^{\perp}}$ . Prove that

$$X_{\Sigma} \setminus X_{\check{\sigma}} = \bigcup_{\substack{\tau \in \Sigma \\ \tau \not\subset \sigma}} F_{\tau}.$$

**2** State necessary and sufficient conditions on a fan  $\Sigma$  in  $N_{\mathbf{R}}$ , where  $N \cong \mathbf{Z}^n$ , for the toric variety  $X_{\Sigma,N}$  to be smooth. Show that, for any given fan  $\Sigma$ , there is a subdivision  $\Sigma'$  with  $X_{\Sigma',N}$  smooth.

Let

$$\sigma = \mathbf{R}_{+}(1,0,0) + \mathbf{R}_{+}(1,1,1) + \mathbf{R}_{+}(0,2,1) + \mathbf{R}_{+}(1,1,0)$$

in  $N_{\mathbf{R}}$ , where now  $N = \mathbf{Z}^3$ . Show that  $X_{\check{\sigma}}$  has an isolated singularity at the origin. Find two *different* smooth resolutions  $X_{\Sigma_1} \to X_{\check{\sigma}}$  and  $X_{\Sigma_2} \to X_{\check{\sigma}}$  of the singularity  $X_{\check{\sigma}}$ , both of which are minimal (in the sense that neither  $\Sigma_i$  is the subdivision of a fan  $\Sigma'$  with  $X_{\Sigma',N}$ smooth).

Describe the exceptional surfaces (if any) for both the smooth resolutions  $X_{\Sigma_i} \to X_{\check{\sigma}}$  (i = 1, 2). Show that the birational map

$$X_{\Sigma_1} - \to X_{\Sigma_2}$$

may be factored into a composite of toric blow-ups and inverses of toric blow-ups.

3

**3** Prove that any complex affine toric surface singularity has the form

$$X_{r,q} = \mathbf{C}^2 / \mu_r$$

where r, q are coprime integers such that 0 < q < r and  $\mu_r = \langle \zeta \rangle$  acts by

$$(x,y) \mapsto (\zeta^q x, \zeta y),$$

with  $\zeta$  denoting a primitive *r*th root of unity.

Describe (with proof) the recipe for obtaining a (minimal) resolution of  $X_{r,q}$ , and explain how to find the number t of exceptional curves in the resolution. Prove that t = 1 if and only if q = 1, and that t = 2 if and only if q > 1 and q divides r + 1.

Classify all complete complex toric surfaces  $X_{\Sigma}$  with  $|\Sigma^{(1)}| = 3$  containing at most one singularity. Show that there is a complete complex toric surface  $X_{\Sigma}$  with  $|\Sigma^{(1)}| = 4$ containing  $X_{r,q}$  as its only singular point if and only if r-1 has a factor s congruent to  $\pm q \mod r$ .

4 For  $X_{\Sigma,N}$  a complete toric variety, with  $\Sigma^{(1)} = \{\tau_1, \ldots, \tau_d\}$ , let  $F_i$  denote the invariant divisors  $F_{\tau_i}$ , for  $i = 1, \ldots, d$ . Describe the maps in the standard short exact sequence

$$0 \to M \to \bigoplus_{i=1}^{d} \mathbf{Z} F_i \to \operatorname{Cl}(X_{\Sigma}) \to 0$$

(you need not prove exactness). If  $D = \sum r_i F_i$  is a divisor on  $X_{\Sigma,N}$ , explain (without proof) how to find a basis of the vector space  $\mathcal{L}(D)$ , and state (without proof) a numerical criterion for D to be ample.

Give a toric definition for the weighted projective space  $X = \mathbf{P}(q_0, \ldots, q_n)$  (specify a lattice N and a fan  $\Sigma$ ). Assuming that X is well-formed, show that  $\operatorname{Cl}(X)$  is isomorphic to  $\mathbf{Z}$ , and exhibit an explicit ample generator. If D is an ample divisor on X with class generating  $\operatorname{Cl}(X)$ , show that

$$\bigoplus_{r \ge 0} \mathcal{L}(rD) \cong S(Q)$$

as graded k-algebras, where S(Q) denotes the polynomial ring  $k[X_0, \ldots, X_n]$  over the field of definition k, graded by specifying that  $\deg(X_i) = q_i$  for  $0 \leq i \leq n$ .

Paper 12