PAPER 12

TORIC VARIETIES

Attempt THREE questions
There are four questions in total
The questions carry equal weight

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let $N \cong \mathbf{Z}^{n}$ denote a lattice and $\sigma \subset N_{\mathbf{R}}=N \otimes \mathbf{R}$ a rational polyhedral cone with a vertex. Show that there is an order reversing bijection between the faces of σ and those of the dual cone $\check{\sigma} \subset M_{\mathbf{R}}=M \otimes \mathbf{R}$, where M denotes the dual lattice to N.

Given a face $\tau=\sigma \cap \mu^{\perp}$ of $\sigma(\mu \in M \cap \check{\sigma})$, show that $X_{\check{\tau}}$ is an open subvariety of $X_{\check{\sigma}}$. Prove that $X_{\check{\sigma}} \backslash X_{\check{\tau}}$ is the union of closed subvarieties X_{γ}, for γ ranging over faces of $\check{\sigma}$ not containing μ. For faces τ_{1}, τ_{2} of σ, show that

$$
X_{\left(\tau_{1} \cap \tau_{2}\right)^{\check{ }}}=X_{\check{\tau}_{1}} \cap X_{\check{\tau}_{2}}
$$

Suppose now that Σ is a fan in $N_{\mathbf{R}}$, with corresponding toric variety X_{Σ}. For $\tau \in \Sigma$, define the closed subvariety F_{τ} of X_{Σ} as the closure of the subset $X_{\tau^{\perp}}$. Prove that

$$
X_{\Sigma} \backslash X_{\check{\sigma}}=\bigcup_{\substack{\tau \in \Sigma \\ \tau \not \subset \sigma}} F_{\tau}
$$

2 State necessary and sufficient conditions on a fan Σ in $N_{\mathbf{R}}$, where $N \cong \mathbf{Z}^{n}$, for the toric variety $X_{\Sigma, N}$ to be smooth. Show that, for any given fan Σ, there is a subdivision Σ^{\prime} with $X_{\Sigma^{\prime}, N}$ smooth.

Let

$$
\sigma=\mathbf{R}_{+}(1,0,0)+\mathbf{R}_{+}(1,1,1)+\mathbf{R}_{+}(0,2,1)+\mathbf{R}_{+}(1,1,0)
$$

in $N_{\mathbf{R}}$, where now $N=\mathbf{Z}^{3}$. Show that $X_{\check{\sigma}}$ has an isolated singularity at the origin. Find two different smooth resolutions $X_{\Sigma_{1}} \rightarrow X_{\check{\sigma}}$ and $X_{\Sigma_{2}} \rightarrow X_{\check{\sigma}}$ of the singularity $X_{\check{\sigma}}$, both of which are minimal (in the sense that neither Σ_{i} is the subdivision of a fan Σ^{\prime} with $X_{\Sigma^{\prime}, N}$ smooth).

Describe the exceptional surfaces (if any) for both the smooth resolutions $X_{\Sigma_{i}} \rightarrow$ $X_{\check{\sigma}}(i=1,2)$. Show that the birational map

$$
X_{\Sigma_{1}}-\rightarrow X_{\Sigma_{2}}
$$

may be factored into a composite of toric blow-ups and inverses of toric blow-ups.

3 Prove that any complex affine toric surface singularity has the form

$$
X_{r, q}=\mathbf{C}^{2} / \mu_{r}
$$

where r, q are coprime integers such that $0<q<r$ and $\mu_{r}=\langle\zeta\rangle$ acts by

$$
(x, y) \mapsto\left(\zeta^{q} x, \zeta y\right)
$$

with ζ denoting a primitive r th root of unity.
Describe (with proof) the recipe for obtaining a (minimal) resolution of $X_{r, q}$, and explain how to find the number t of exceptional curves in the resolution. Prove that $t=1$ if and only if $q=1$, and that $t=2$ if and only if $q>1$ and q divides $r+1$.

Classify all complete complex toric surfaces X_{Σ} with $\left|\Sigma^{(1)}\right|=3$ containing at most one singularity. Show that there is a complete complex toric surface X_{Σ} with $\left|\Sigma^{(1)}\right|=4$ containing $X_{r, q}$ as its only singular point if and only if $r-1$ has a factor s congruent to $\pm q \bmod r$.

4 For $X_{\Sigma, N}$ a complete toric variety, with $\Sigma^{(1)}=\left\{\tau_{1}, \ldots, \tau_{d}\right\}$, let F_{i} denote the invariant divisors $F_{\tau_{i}}$, for $i=1, \ldots, d$. Describe the maps in the standard short exact sequence

$$
0 \rightarrow M \rightarrow \bigoplus_{i=1}^{d} \mathbf{Z} F_{i} \rightarrow \mathrm{Cl}\left(X_{\Sigma}\right) \rightarrow 0
$$

(you need not prove exactness). If $D=\sum r_{i} F_{i}$ is a divisor on $X_{\Sigma, N}$, explain (without proof) how to find a basis of the vector space $\mathcal{L}(D)$, and state (without proof) a numerical criterion for D to be ample.

Give a toric definition for the weighted projective space $X=\mathbf{P}\left(q_{0}, \ldots, q_{n}\right)$ (specify a lattice N and a fan Σ). Assuming that X is well-formed, show that $\mathrm{Cl}(X)$ is isomorphic to \mathbf{Z}, and exhibit an explicit ample generator. If D is an ample divisor on X with class generating $\mathrm{Cl}(X)$, show that

$$
\bigoplus_{r \geqslant 0} \mathcal{L}(r D) \cong S(Q)
$$

as graded k-algebras, where $S(Q)$ denotes the polynomial ring $k\left[X_{0}, \ldots, X_{n}\right]$ over the field of definition k, graded by specifying that $\operatorname{deg}\left(X_{i}\right)=q_{i}$ for $0 \leqslant i \leqslant n$.

