

MATHEMATICAL TRIPOS Part III

Tuesday 6 June, 2006 1.30 to 3.30

PAPER 27

TOPICS IN NUMBER THEORY

Attempt **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

Throughout, p denotes a prime number.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. $\mathbf{2}$

1

(i) Prove that the multiplicative group of \mathbb{Q}_p is isomorphic to $\mathbb{Z}/(p-1)\mathbb{Z} \times \mathbb{Z}_p \times \mathbb{Z}$ if $p \neq 2$.

(ii) Let K be complete with respect to a nonarchimedean absolute value, with residue field k_K . What does it mean to say that a finite extension L/K is unramified? Show that if L/K is unramified then $\mathfrak{o}_L = \mathfrak{o}_K[x]$ for any $x \in \mathfrak{o}_L$ whose reduction \bar{x} modulo the maximal ideal satisfies $k_L = k_K[\bar{x}]$.

$\mathbf{2}$

(i) State carefully Mahler's theorem. Show that the Mahler coefficients of a continuous function $f : \mathbb{Z}_p \to \mathbb{Z}_p$ are given by the generating function

$$\sum_{n \ge 0} \frac{c_n}{n!} T^n = e^{-T} \sum_{n \ge 0} \frac{f(n)}{n!} T^n.$$

(ii) Show that if $f : \mathbb{Z}_p \to \mathbb{Z}_p$ is continuous, then the function $g : \mathbb{N} \to \mathbb{Z}_p$ defined by

$$g(n) = f(0) + \ldots + f(n-1), \quad g(0) = 0$$

extends to a continuous function $\mathbb{Z}_p \to \mathbb{Z}_p$. What is its Mahler expansion?

(iii) Show that any linear form $L : \mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p) \to \mathbb{Q}_p$ which is invariant under translations (i.e. if h(x) = f(x+a) for some $a \in \mathbb{Z}_p$ then L(f) = L(h)) is zero.

3 Let K be a field of characteristic zero, complete with respect to a discrete valuation, with valuation ring \mathfrak{o}_K and uniformiser π . Let $f(X) \in \mathfrak{o}_K[X]$ and $x \in \mathfrak{o}_K$ such that $f(x) \equiv 0 \pmod{\pi}$ and $f'(x) \not\equiv 0 \pmod{\pi}$. Show that there exists a unique $y \in \mathfrak{o}_K$ such that $x \equiv y \pmod{\pi}$ and f(y) = 0.

Suppose that the residue field of K is finite, of order $q = p^r$. Show that the group of roots of unity of K has order $p^s(q-1)$ for some $s \ge 0$. Show that if v(p) < p-1(where the valuation is normalised so that $v(\pi) = 1$) then s = 0. Show by example that if v(p) = p - 1 both s = 0 and s = 1 can occur.

Paper 27

 $\mathbf{4}$

- (i) Let K be a field and $|\cdot|$ a nonarchimedean absolute value on K, with associated valuation ring \mathfrak{o} . Show that \mathfrak{o} is a local ring which is integrally closed. Show also that \mathfrak{o} is a principal ideal domain if and only if the valuation associated to $|\cdot|$ is discrete.
- (ii) State and prove Krasner's lemma.

(iii) By considering the series $\sum_{n\geq 0} p^n \zeta_{p^{n+1}}$ or otherwise, show that the algebraic closure of \mathbb{Q}_p is not complete.

END OF PAPER