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TOPICS IN NUMBER THEORY

Attempt THREE questions.

There are FOUR questions in total.

The questions carry equal weight.

Throughout, p denotes a prime number.
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(i) Prove that the multiplicative group of Qp is isomorphic to Z/(p− 1)Z× Zp × Z if
p 6= 2.

(ii) Let K be complete with respect to a nonarchimedean absolute value, with residue
field kK . What does it mean to say that a finite extension L/K is unramified? Show
that if L/K is unramified then oL = oK [x] for any x ∈ oL whose reduction x̄ modulo the
maximal ideal satisfies kL = kK [x̄].

2

(i) State carefully Mahler’s theorem. Show that the Mahler coefficients of a continuous
function f : Zp → Zp are given by the generating function

∑
n≥0

cn

n!
Tn = e−T

∑
n≥0

f(n)
n!

Tn.

(ii) Show that if f : Zp → Zp is continuous, then the function g : N → Zp defined by

g(n) = f(0) + . . . + f(n− 1), g(0) = 0

extends to a continuous function Zp → Zp. What is its Mahler expansion?

(iii) Show that any linear form L : C(Zp, Qp) → Qp which is invariant under translations
(i.e. if h(x) = f(x + a) for some a ∈ Zp then L(f) = L(h)) is zero.

3 Let K be a field of characteristic zero, complete with respect to a discrete valuation,
with valuation ring oK and uniformiser π. Let f(X) ∈ oK [X] and x ∈ oK such that
f(x) ≡ 0 (mod π) and f ′(x) 6≡ 0 (mod π). Show that there exists a unique y ∈ oK such
that x ≡ y (mod π) and f(y) = 0.

Suppose that the residue field of K is finite, of order q = pr. Show that the group
of roots of unity of K has order ps(q − 1) for some s ≥ 0. Show that if v(p) < p − 1
(where the valuation is normalised so that v(π) = 1) then s = 0. Show by example that
if v(p) = p− 1 both s = 0 and s = 1 can occur.
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(i) Let K be a field and | · | a nonarchimedean absolute value on K, with associated
valuation ring o. Show that o is a local ring which is integrally closed. Show also
that o is a principal ideal domain if and only if the valuation associated to | · | is
discrete.

(ii) State and prove Krasner’s lemma.

(iii) By considering the series
∑

n≥0 pnζpn+1 or otherwise, show that the algebraic closure
of Qp is not complete.
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