MATHEMATICAL TRIPOS Part III

We dnesday 6 June 2007 1.30 to 4.30

PAPER 7

TOPICS IN GROUP THEORY

Attempt **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

- (i) Define in terms of series what it means for G to be *nilpotent*.
- (ii) Prove that any p-group (for p a prime) is nilpotent. [You may use without proof the result that any non-trivial p-group has non-trivial centre.]
- (iii) Prove that if $K \leq H \leq G$, then $[H,G] \leq K$ if and only if $K \leq G$ and $H/K \leq Z(G/K)$.
- (iv) Prove that a direct product of two nilpotent groups is also nilpotent.
- (v) Define the *lower central series*

$$G = \Gamma_1(G) \bowtie \Gamma_2(G) \trianglerighteq \Gamma_3(G) \trianglerighteq \cdots$$

of G and the upper central series

$$1 = Z_0(G) \triangleleft Z_1(G) \triangleleft Z_2(G) \triangleleft \cdots$$

of G. Show that G is nilpotent if and only if $\Gamma_n(G) = 1$ for some n if and only if $Z_n(G) = G$ for some n. Moreover, suppose G is nilpotent and

$$1 = G_0 \trianglelefteq G_1 \trianglelefteq \cdots \trianglelefteq G_{r-1} \trianglelefteq G_r = G$$

is any central series of G; show that for i = 0, ..., r we have $\Gamma_{r-i+1}(G) \leq G_i \leq Z_i(G)$, and deduce that for c > 0 we have $\Gamma_{c+1}(G) = 1$ if and only if $Z_c(G) = G$.

(vi) Let G be a Sylow 2-subgroup of S_7 . Give generators for G, and find its lower and upper central series.

2 Let (G, Ω) be a transitive permutation group, where Ω is a finite set.

- (i) Define what it means for a permutation group (G^+, Ω^+) to be a *one-point extension* of (G, Ω) .
- (ii) Show that the permutation group $(D_{2(p-1)}, \Omega)$, where $p \ge 5$ is prime and $\Omega = \{1, \ldots, p-1\}$, has no one-point extension.
- (iii) State and prove necessary and sufficient conditions for the existence of a one-point extension of (G, Ω) .
- (iv) Show that, for each $n \ge 3$, the alternating group A_n in its natural action satisfies the conditions in (iii) and therefore has a one-point extension.

- **3** Let V be a vector space of dimension n over the field of q elements.
 - (i) Define what it means for a linear map in $\operatorname{GL}(V)$ to be a *transvection*. Show that any transvection may be written as $\tau_{f,d} : v \mapsto v + (vf)d$ for $v \in V$, where f is a linear functional on V and $0 \neq d \in \ker f$. Calculate the product of $\tau_{f,d}$ and $\tau_{f',d}$, and the result of conjugating $\tau_{f,d}$ by an element g of $\operatorname{GL}(V)$.

Let \mathcal{T} denote the set of transvections in GL(V), and $\mathcal{T}^{\#} = \mathcal{T} \setminus \{1\}$.

- (ii) Prove that if $n \ge 2$ then $\mathcal{T}^{\#}$ forms a single conjugacy class in $\operatorname{GL}(V)$, and lies in $\operatorname{SL}(V)$; prove moreover that if $n \ge 3$ then $\mathcal{T}^{\#}$ forms a single conjugacy class in $\operatorname{SL}(V)$.
- (iii) Prove that \mathcal{T} generates SL(V).
- (iv) Prove that if $n \ge 2$, and $(n,q) \ne (2,2)$ or (2,3), then SL(V) is perfect.

$\mathbf{4}$

- (i) Show that if $n \neq 6$ then $\operatorname{Out} S_n = 1$, while $|\operatorname{Out} S_6| \leq 2$.
- (ii) Show that S_6 has exactly 6 (synthematic) totals.

Label the totals of S_6 as shown:

$$\begin{split} T_1 &= \{(1\ 2)(3\ 4)(5\ 6), (1\ 3)(2\ 5)(4\ 6), (1\ 4)(2\ 6)(3\ 5), (1\ 5)(2\ 4)(3\ 6), (1\ 6)(2\ 3)(4\ 5)\}, \\ T_2 &= \{(1\ 2)(3\ 4)(5\ 6), (1\ 3)(2\ 6)(4\ 5), (1\ 4)(2\ 5)(3\ 6), (1\ 5)(2\ 3)(4\ 6), (1\ 6)(2\ 4)(3\ 5)\}, \\ T_3 &= \{(1\ 2)(3\ 6)(4\ 5), (1\ 3)(2\ 5)(4\ 6), (1\ 4)(2\ 3)(5\ 6), (1\ 5)(2\ 6)(3\ 4), (1\ 6)(2\ 4)(3\ 5)\}, \\ T_4 &= \{(1\ 2)(3\ 6)(4\ 5), (1\ 3)(2\ 4)(5\ 6), (1\ 4)(2\ 6)(3\ 5), (1\ 5)(2\ 3)(4\ 6), (1\ 6)(2\ 5)(3\ 4)\}, \\ T_5 &= \{(1\ 2)(3\ 5)(4\ 6), (1\ 3)(2\ 6)(4\ 5), (1\ 4)(2\ 3)(5\ 6), (1\ 5)(2\ 4)(3\ 6), (1\ 6)(2\ 5)(3\ 4)\}, \\ T_6 &= \{(1\ 2)(3\ 5)(4\ 6), (1\ 3)(2\ 4)(5\ 6), (1\ 4)(2\ 5)(3\ 6), (1\ 5)(2\ 6)(3\ 4), (1\ 6)(2\ 3)(4\ 5)\}. \end{split}$$

The set $\{T_1, \ldots, T_6\}$ has a natural action of S_6 by conjugation; define $\alpha \in \operatorname{Aut} S_6 \setminus \operatorname{Inn} S_6$ by $T_i^{\pi} = T_{i\pi^{\alpha}}$ for $\pi \in S_6$ and $i = 1, \ldots, 6$.

- (iii) Give the image under α of the transpositions (1 2), (2 3), (3 4), (4 5) and (5 6). By taking suitable products of these, identify two elements of S_6 of order 2 which are fixed by α ; hence find a 5-cycle fixed by α .
- (iv) Define what is meant by a Steiner system S(5, 6, 12). Explain how to obtain such a Steiner system on the set $\{1, \ldots, 6, T_1, \ldots, T_6\}$.

END OF PAPER