MATHEMATICAL TRIPOS
 Part III

Wednesday 6 June 20071.30 to 4.30

PAPER 7

TOPICS IN GROUP THEORY

Attempt THREE questions.
There are $\boldsymbol{F O U R}$ questions in total.
The questions carry equal weight.

STATIONERY REQUIREMENTS
Cover sheet
Treasury Tag
Script paper

SPECIAL REQUIREMENTS None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let G be a finite group.
(i) Define in terms of series what it means for G to be nilpotent.
(ii) Prove that any p-group (for p a prime) is nilpotent. [You may use without proof the result that any non-trivial p-group has non-trivial centre.]
(iii) Prove that if $K \unlhd H \leqslant G$, then $[H, G] \leqslant K$ if and only if $K \unlhd G$ and $H / K \leqslant Z(G / K)$.
(iv) Prove that a direct product of two nilpotent groups is also nilpotent.
(v) Define the lower central series

$$
G=\Gamma_{1}(G) \unrhd \Gamma_{2}(G) \unrhd \Gamma_{3}(G) \unrhd \cdots
$$

of G and the upper central series

$$
1=Z_{0}(G) \unlhd Z_{1}(G) \unlhd Z_{2}(G) \unlhd \cdots
$$

of G. Show that G is nilpotent if and only if $\Gamma_{n}(G)=1$ for some n if and only if $Z_{n}(G)=G$ for some n. Moreover, suppose G is nilpotent and

$$
1=G_{0} \unlhd G_{1} \unlhd \cdots \unlhd G_{r-1} \unlhd G_{r}=G
$$

is any central series of G; show that for $i=0, \ldots, r$ we have $\Gamma_{r-i+1}(G) \leqslant G_{i} \leqslant$ $Z_{i}(G)$, and deduce that for $c>0$ we have $\Gamma_{c+1}(G)=1$ if and only if $Z_{c}(G)=G$.
(vi) Let G be a Sylow 2-subgroup of S_{7}. Give generators for G, and find its lower and upper central series.

2 Let (G, Ω) be a transitive permutation group, where Ω is a finite set.
(i) Define what it means for a permutation group $\left(G^{+}, \Omega^{+}\right)$to be a one-point extension of (G, Ω).
(ii) Show that the permutation group $\left(D_{2(p-1)}, \Omega\right)$, where $p \geqslant 5$ is prime and $\Omega=$ $\{1, \ldots, p-1\}$, has no one-point extension.
(iii) State and prove necessary and sufficient conditions for the existence of a one-point extension of (G, Ω).
(iv) Show that, for each $n \geqslant 3$, the alternating group A_{n} in its natural action satisfies the conditions in (iii) and therefore has a one-point extension.
$3 \quad$ Let V be a vector space of dimension n over the field of q elements.
(i) Define what it means for a linear map in $\mathrm{GL}(V)$ to be a transvection. Show that any transvection may be written as $\tau_{f, d}: v \mapsto v+(v f) d$ for $v \in V$, where f is a linear functional on V and $0 \neq d \in \operatorname{ker} f$. Calculate the product of $\tau_{f, d}$ and $\tau_{f^{\prime}, d}$, and the result of conjugating $\tau_{f, d}$ by an element g of $\operatorname{GL}(V)$.
Let \mathcal{T} denote the set of transvections in $\mathrm{GL}(V)$, and $\mathcal{T}^{\#}=\mathcal{T} \backslash\{1\}$.
(ii) Prove that if $n \geqslant 2$ then $\mathcal{T}^{\#}$ forms a single conjugacy class in GL(V), and lies in $\mathrm{SL}(V)$; prove moreover that if $n \geqslant 3$ then $\mathcal{T} \#$ forms a single conjugacy class in SL(V).
(iii) Prove that \mathcal{T} generates $\operatorname{SL}(V)$.
(iv) Prove that if $n \geqslant 2$, and $(n, q) \neq(2,2)$ or $(2,3)$, then $\operatorname{SL}(V)$ is perfect.

4
(i) Show that if $n \neq 6$ then Out $S_{n}=1$, while \mid Out $S_{6} \mid \leqslant 2$.
(ii) Show that S_{6} has exactly 6 (synthematic) totals.

Label the totals of S_{6} as shown:

$$
\begin{aligned}
& T_{1}=\{(12)(34)(56),(13)(25)(46),(14)(26)(35),(15)(24)(36),(16)(23)(45)\}, \\
& T_{2}=\{(12)(34)(56),(13)(26)(45),(14)(25)(36),(15)(23)(46),(16)(24)(35)\}, \\
& T_{3}=\{(12)(36)(45),(13)(25)(46),(14)(23)(56),(15)(26)(34),(16)(24)(35)\}, \\
& T_{4}=\{(12)(36)(45),(13)(24)(56),(14)(26)(35),(15)(23)(46),(16)(25)(34)\} \text {, } \\
& T_{5}=\{(12)(35)(46),(13)(26)(45),(14)(23)(56),(15)(24)(36),(16)(25)(34)\} \text {, } \\
& T_{6}=\{(12)(35)(46),(13)(24)(56),(14)(25)(36),(15)(26)(34),(16)(23)(45)\} \text {. }
\end{aligned}
$$

The set $\left\{T_{1}, \ldots, T_{6}\right\}$ has a natural action of S_{6} by conjugation; define $\alpha \in \operatorname{Aut} S_{6} \backslash \operatorname{Inn} S_{6}$ by $T_{i}{ }^{\pi}=T_{i \pi^{\alpha}}$ for $\pi \in S_{6}$ and $i=1, \ldots, 6$.
(iii) Give the image under α of the transpositions (12), (2 3), (3 4), (45) and (56). By taking suitable products of these, identify two elements of S_{6} of order 2 which are fixed by α; hence find a 5 -cycle fixed by α.
(iv) Define what is meant by a Steiner system $S(5,6,12)$. Explain how to obtain such a Steiner system on the set $\left\{1, \ldots, 6, T_{1}, \ldots, T_{6}\right\}$.

END OF PAPER

