PAPER 2

TOPICS IN GROUP THEORY

Attempt THREE questions.
There are six questions in total.
The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let G be a finite group.
(a) Define the Frattini subgroup $\Phi(G)$ and Fitting subgroup $F(G)$ of G. Prove that $F(G)$ exists.
(b) Show that $\Phi(G) \leq F(G)$.
(c) If G is soluble prove that $F(G)$ contains its own centraliser.
(d) Let G be a finite group. The socle of G is the subgroup $\operatorname{Soc}(G)$ generated by all the minimal normal subgroups of G. Show that $F(G) \leq C_{G}(\operatorname{Soc}(G))$.
(e) Prove that $F(G / \Phi(G))=F(G) / \Phi(G)$.

2 Write an essay on soluble groups. You should include a treatment of Hall π subgroups.

3 Let G be a doubly transitive permutation group on a finite set Ω of size n and let N be a minimal normal subgroup of G.
(a) If N is regular show that N is elementary abelian of order $n=p^{d}$ for some prime number p and G is a subgroup of $A G L(d, p)$.
(b) If N is imprimitive show that N is regular.
(c) If N is primitive and non-regular show that N is a non-abelian simple group and $N \leq G \leq \operatorname{Aut}(N)$.
(d) If G is 4 -transitive on Ω and N is regular, show that $n=4$ and $G \cong S_{4}$.

4 (a) Let G be a group acting primitively on a set Ω and suppose that G is generated by $\left\{A^{g}: g \in G\right\}$, where A is an abelian normal subgroup of G_{α} for some $\alpha \in \Omega$. If N is a normal subgroup of G, show that either $G^{\prime} \leq N$ or $N \leq G_{[\Omega]}$ (where $G_{[\Omega]}$ is the pointwise stabiliser of Ω).
(b) Prove that the special linear group $S L(n, \mathbb{F})$ of dimension $n \geq 2$ over a field \mathbb{F}, is generated by transvections.
(c) Prove that $\operatorname{PSL}(n, \mathbb{F})$ is simple if $n \geq 3$ or if $n=2$ and $|\mathbb{F}|>3$.
(d) Outline the modifications necessary to prove the corresponding result for symplectic groups.

5 (a) Describe how to associate a partition-valued function on the set of irreducible polynomials over \mathbb{F}_{q} to each conjugacy class of $G L(n, q)$ and give an expression for the size of the corresponding centraliser.
(b) Show that the number of conjugacy classes in $G L(n, q)$ is the coefficient of t^{n} in

$$
\prod_{i=1}^{\infty} \frac{1-t^{i}}{1-q t^{i}}
$$

(c) Show that the number of unipotent elements in $G L(n, q)$ is $q^{n^{2}-n}$.
[You may assume that $\prod_{i=1}^{\infty} \frac{1}{1-s t^{i}}=\sum_{k=0}^{\infty} \frac{s^{k} t^{k}}{\phi_{k}(t)}$ where $\phi_{k}(t)=\prod_{i=1}^{k}\left(1-t^{i}\right)$.]
(d) Let $f(t)$ be a monic irreducible quadratic polynomial over \mathbb{F}_{q}. Show that the number of elements of $G L(2 m, q)$ whose minimal polynomial is a power of $f(t)$ is

$$
q^{2 m^{2}-2 m}|G L(2 m, q)| /\left|G L\left(m, q^{2}\right)\right| .
$$

6 (a) Define the symplectic group $S p(2 m, q)$ and show that

$$
|S p(2 m, q)|=q^{m^{2}} \prod_{i=1}^{m}\left(q^{2 i}-1\right)
$$

(b) Let $\Omega=\{1,2, \ldots, n\}$ and let V be the set of all subsets of Ω. With addition defined by symmetric difference,

$$
A+B=(A \cup B) \backslash(A \cap B)
$$

V can be regarded as a vector space over the field \mathbb{F}_{2} of order 2 . Show that the map $():, V \times V \rightarrow \mathbb{F}_{2}$ defined by

$$
(A, B)=|A \cap B| \quad(\bmod 2)
$$

is a symmetric bilinear form on V, preserved by the natural action of the symmetric group S_{n}.

If n is even, show that (,) induces a non-singular alternating bilinear form on $<\Omega>^{\perp} /<\Omega>$.
(c) Prove that $S p(4,2) \cong S_{6}$.

