

MATHEMATICAL TRIPOS Part III

Thursday 27 May, 2004 1.30 to 4.30

PAPER 2

TOPICS IN GROUP THEORY

Attempt **THREE** questions.

There are **six** questions in total.

The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

- 1 Let G be a finite group.
- (a) Define the Frattini subgroup $\Phi(G)$ and Fitting subgroup F(G) of G. Prove that F(G) exists.
 - (b) Show that $\Phi(G) \leq F(G)$.
 - (c) If G is soluble prove that F(G) contains its own centraliser.
- (d) Let G be a finite group. The *socle* of G is the subgroup Soc(G) generated by all the minimal normal subgroups of G. Show that $F(G) \leq C_G(Soc(G))$.
 - (e) Prove that $F(G/\Phi(G)) = F(G)/\Phi(G)$.
- 2 Write an essay on soluble groups. You should include a treatment of Hall π -subgroups.
- **3** Let G be a doubly transitive permutation group on a finite set Ω of size n and let N be a minimal normal subgroup of G.
- (a) If N is regular show that N is elementary abelian of order $n=p^d$ for some prime number p and G is a subgroup of AGL(d,p).
 - (b) If N is imprimitive show that N is regular.
- (c) If N is primitive and non-regular show that N is a non-abelian simple group and $N \leq G \leq \operatorname{Aut}(N)$.
 - (d) If G is 4-transitive on Ω and N is regular, show that n=4 and $G\cong S_4$.
- 4 (a) Let G be a group acting primitively on a set Ω and suppose that G is generated by $\{A^g:g\in G\}$, where A is an abelian normal subgroup of G_{α} for some $\alpha\in\Omega$. If N is a normal subgroup of G, show that either $G'\leq N$ or $N\leq G_{[\Omega]}$ (where $G_{[\Omega]}$ is the pointwise stabiliser of Ω).
- (b) Prove that the special linear group $SL(n,\mathbb{F})$ of dimension $n \geq 2$ over a field \mathbb{F} , is generated by transvections.
 - (c) Prove that $PSL(n, \mathbb{F})$ is simple if $n \geq 3$ or if n = 2 and $|\mathbb{F}| > 3$.
- (d) Outline the modifications necessary to prove the corresponding result for symplectic groups.

- **5** (a) Describe how to associate a partition-valued function on the set of irreducible polynomials over \mathbb{F}_q to each conjugacy class of GL(n,q) and give an expression for the size of the corresponding centraliser.
- (b) Show that the number of conjugacy classes in GL(n,q) is the coefficient of t^n in

$$\prod_{i=1}^{\infty} \frac{1-t^i}{1-qt^i} \, .$$

(c) Show that the number of unipotent elements in GL(n,q) is q^{n^2-n} .

[You may assume that
$$\prod_{i=1}^{\infty} \frac{1}{1-st^i} = \sum_{k=0}^{\infty} \frac{s^k t^k}{\phi_k(t)}$$
 where $\phi_k(t) = \prod_{i=1}^k (1-t^i)$.]

(d) Let f(t) be a monic irreducible quadratic polynomial over \mathbb{F}_q . Show that the number of elements of GL(2m,q) whose minimal polynomial is a power of f(t) is

$$q^{2m^2-2m}|GL(2m,q)|/|GL(m,q^2)|.$$

6 (a) Define the symplectic group Sp(2m,q) and show that

$$|Sp(2m,q)| = q^{m^2} \prod_{i=1}^{m} (q^{2i} - 1).$$

(b) Let $\Omega = \{1, 2, ..., n\}$ and let V be the set of all subsets of Ω . With addition defined by symmetric difference,

$$A + B = (A \cup B) \setminus (A \cap B),$$

V can be regarded as a vector space over the field \mathbb{F}_2 of order 2. Show that the map $(\ ,\):V\times V\to \mathbb{F}_2$ defined by

$$(A, B) = |A \cap B| \pmod{2},$$

is a symmetric bilinear form on V, preserved by the natural action of the symmetric group S_n .

If n is even, show that (,) induces a non-singular alternating bilinear form on $<\Omega>^{\perp}/<\Omega>.$

(c) Prove that $Sp(4,2) \cong S_6$.