PAPER 3

TOPICS IN GROUP THEORY

Attempt THREE of the six questions, at least ONE of which should be from Section B.
The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

SECTION A

1 Write an essay on nilpotent groups. You should include a proof that a finite group is nilpotent if and only if it is a direct product of groups of prime power order

2 Write an essay on soluble groups. You should include a proof that if π is a set of primes and G is a finite soluble group, then G contains a Hall π-subgroup.

3 (a) Prove that the symmetric group S_{n} has no outer automorphism if $n \neq 6$.
(b) Show that S_{6} has an outer automorphism.

SECTION B

4 (a) Let G be a regular permutation group on a finite set Ω. Show that the centraliser of G in the symmetric group $\operatorname{Sym}(\Omega)$ is isomorphic to G.
(b) Show that the normaliser of G in $\operatorname{Sym}(\Omega)$ is isomorphic to the semi-direct product of G by its automorphism group.
(c) Now suppose that H is a finite doubly transitive permutation group with a regular normal subgroup N. Prove that N is elementary abelian. Deduce that H is isomorphic to a subgroup of an affine group $A G L(d, p)$, where p is a prime number.

5 (a) Let G be a group acting primitively on a set Ω and suppose that G is generated by $\left\{A^{g}: g \in G\right\}$, where A is an abelian normal subgroup of G_{α} for some $\alpha \in \Omega$. If N is a normal subgroup of G, show that either $G^{\prime} \leq N$ or $N \leq G_{[\Omega]}$ (where $G_{[\Omega]}$ is the pointwise stabiliser of Ω).
(b) Prove that the special linear group $S L(n, F)$ of dimension $n \geq 2$ over a field F is generated by transvections.
(c) Prove that $\operatorname{PSL}(n, F)$ is simple if $n \geq 3$ or if $n=2$ and $|F|>3$.

6 (a) Define the symplectic group $S p(2 m, q)$ and show that

$$
|S p(2 m, q)|=q^{m^{2}} \prod_{i=1}^{m}\left(q^{2 i}-1\right)
$$

(b) Let $\Omega=\{1,2, \ldots, n\}$ and let V be the set of all subsets of Ω. With addition defined by symmetric difference,

$$
A+B=(A \backslash B) \cup(B \backslash A)
$$

V can be regarded as a vector space over the field F_{2} of order 2 . Show that the $\operatorname{map}():, V \times V \rightarrow F_{2}$ defined by

$$
(A, B)=|A \cap B| \quad(\bmod 2),
$$

is a symmetric bilinear form on V, preserved by the natural action of the symmetric group S_{n}.

If n is even, show that (,) induces a non-singular alternating bilinear form on $<\Omega>^{\perp} /<\Omega>$.
(c) Prove that $S p(4,2) \cong S_{6}$.

