

MATHEMATICAL TRIPOS Part III

Friday 2 June, 2006 1.30 to 4.30

PAPER 7

TOPICS IN FOURIER ANALYSIS

Attempt **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. $\mathbf{2}$

1

(i) Show that, if $f : \mathbb{T} \to \mathbb{C}$ is continuous, then

$$\sum_{n=-\infty}^{\infty} \hat{f}(n) r^{|n|} e^{int} = f * P_r(t)$$

where

$$P_r(t) = \frac{1 - r^2}{1 - 2r\cos t + r^2}$$

By using the proof of Fejér's theorem as a model, or otherwise, show that

$$f * P_r(t) \to f(t)$$

uniformly as $r \to 1-$.

(ii) If p is a prime of the form 4k + 1, then it can be shown that there exists an integer u with $u^2 \equiv -1 \mod p$. By considering the lattice

$$\Lambda = \{ (n,m) \in \mathbb{Z}^2 : m \equiv nu \bmod p \},\$$

show, carefully stating any theorems that you use, that p is the sum of two squares.

2 Prove the theorem of Kahane and Katznelson which states that, given any subset E of \mathbb{T} of Lebesgue measure zero, there exists an $f \in C(\mathbb{T})$ whose Fourier sum diverges on E.

3

(i) Show that, if $f : \mathbb{R} \to \mathbb{C}$ is reasonably behaved, then

$$\frac{\int_{-\infty}^{\infty} x^2 |f(x)|^2 \, dx}{\int_{-\infty}^{\infty} |f(x)|^2 \, dx} \times \frac{\int_{-\infty}^{\infty} \lambda^2 |\hat{f}(\lambda)|^2 \, d\lambda}{\int_{-\infty}^{\infty} |\hat{f}(\lambda)|^2 \, d\lambda} \geqslant \frac{1}{4}.$$

You should quote carefully any theorems that you use. Explain, with proof, when equality occurs.

(ii) Show how, if $f : \mathbb{R} \to \mathbb{C}$ is reasonably behaved and $\hat{f}(\lambda) = 0$ for $|\lambda| \ge \pi$, we can recover f(t) for all $t \in \mathbb{R}$ from the values of f(n) with n an integer.

Show that, if $\epsilon > 0$, the condition $\hat{g}(\lambda) = 0$ for $|\lambda| \ge \pi + \epsilon$, does not imply that g is uniquely determined by the values of g(n) with n an integer.

- $\mathbf{4}$
- (i) Prove the following version of the Riemann–Lebesgue lemma. If $f : \mathbb{T} \to \mathbb{C}$ is continuous, then $\hat{f}(r) \to 0$ as $|r| \to \infty$.

Show also that, if k(r) > 0 and $k(r) \to \infty$ as $r \to \infty$, then there exists a continuous function $g: \mathbb{T} \to \mathbb{C}$ such that $\limsup_{r \to \infty} k(r) |\hat{g}(r)| = \infty$.

(ii) In this question we use the normalisation of Haar functions such that

$$\int |H(t)|^2 \, dt = 1$$

for each Haar function H. Prove the case of Tao's theorem which states that, if $f:\mathbb{T}\to\mathbb{C}$ is continuous, then

$$\sum_{|\hat{f}(H)| \ge \delta} \hat{f}(H) H(t) \to f(t)$$

uniformly as $\delta \to 0+$.

END OF PAPER