PAPER 13

TOPICS IN COMBINATORICS

Attempt THREE questions.
There are five questions in total.
The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 State and prove the discrete Poincaré inequality. Use it to prove that there is a polynomial-time algorithm for approximating, with high probability, the permanent of a suitably dense 01-matrix.

2 State and prove Szemerédi's regularity lemma, and discuss its applications.

3 Proving any preliminary results you might need (except that you may assume an upper bound on the number of edges in a planar graph), show that n points in the plane must determine at least $c n^{4 / 5}$ distinct distances, for some absolute constant c.

4 Assuming a result relating monotone circuit complexity to approximation of lattices, obtain a superpolynomial lower bound for the monotone circuit complexity of the clique function.

5 Write an essay on the Frankl-Wilson theorem and its applications.

