PAPER 40

Time Series and Monte Carlo Inference

Attempt FOUR questions.

There are six questions in total.
The questions carry equal weight.

Note: The following properties of the Gamma and Beta distributions may be used without proof:

If $X \sim \Gamma(a, b)$ then

$$
f_{X}(x)=\frac{b^{a}}{\Gamma(a)} x^{a-1} e^{-b x}, \quad x \geqslant 0
$$

and $\mathbb{E}(X)=\frac{a}{b}$, with $\operatorname{Var}(X)=\frac{a}{b^{2}}$.
If $X \sim \beta(a, b)$ then

$$
f_{X}(x)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} x^{a-1}(1-x)^{b-1}, \quad 0<x<1
$$

and $\mathbb{E}(X)=\frac{a}{a+b}$, with $\operatorname{Var}(X)=\frac{a b}{(a+b)^{2}(a+b+1)}$.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Time Series

a) Let X be a second-order stationary process. Define its autocorrelations, correlogram, and sample partial autocorrelations and explain how they can be used to diagnose AR and MA processes.
b) Define the spectral density $f_{X}(\omega)$ of X. Suppose $Y_{t}=\sum_{s=-\infty}^{+\infty} a_{s} X_{t-s}$, for a sequence of real numbers $\left\{a_{s}\right\}$ such that $\sum_{s=-\infty}^{+\infty}\left|a_{s}\right|<\infty$. Let $A(z)=\sum_{s=-\infty}^{+\infty} a_{s} z^{s}$, $|z| \leq 1$. Show that the process Y is second-order stationary and has the spectral density $f_{Y}(\omega)=\left|A\left(e^{i \omega}\right)\right|^{2} f_{X}(\omega)$.
c) Suppose the moving average $\frac{1}{6}[-1,2,4,2,-1]$ is applied k times to the white noise series $\left\{Z_{t}\right\}$, where $\mathrm{E} Z_{t}=0, \mathrm{E} Z_{t}^{2}=\sigma^{2}$. Find the spectral density of the smoothed series, say $f_{k}(\omega)$. Show that if $\omega \neq \pi / 3$ then $f_{k}(\omega) / f_{k}(\pi / 3) \rightarrow 0$ as $k \rightarrow \infty$. Comment on the effect produced by repeated smoothing.

2 Time Series

a) Consider the state space model,

$$
X_{t}=S_{t}+v_{t}, \quad S_{t}=S_{t-1}+w_{t}
$$

where X_{t} and S_{t} are both scalars, X_{t} is observed, S_{t} is unobserved, and $\left\{v_{t}\right\},\left\{w_{t}\right\}$ are independent Gaussian white noise sequences with variances V and W respectively. Show that X_{t} is an ARMA $(1,1)$ process.
b) Denote $\mathrm{F}_{t-1}=\sigma\left(X_{1}, \ldots, X_{t-1}\right)$. Suppose we know that the conditional distribution of S_{t-1} given F_{t-1} is $\mathrm{N}\left(\widehat{S}_{t-1}, P_{t-1}\right)$, i.e., normal with mean \widehat{S}_{t-1} and variance P_{t-1}. Derive the Kalman filtering equations for \widehat{S}_{t} and P_{t}.
c) Show that $P_{t} \equiv P$ (independently of t) if and only if $P^{2}+P W=W V$, and deduce that in this case the Kalman filter for \widehat{S}_{t} is equivalent to exponential smoothing.

3 Monte Carlo Inference

Describe how, given an infinite series of standard uniform variates U_{1}, U_{2}, \ldots, you could
(i) sample from a $\operatorname{Bin}(n, p)$ distribution;
(ii) sample from an $\exp (\lambda)$ distribution via inversion;
(iii) sample from a $\beta(a, b)$ distribution via rejection sampling for $a, b \geqslant 1$;
(iv) sample from a $N\left(0, \sigma^{2}\right)$ via the ratio of uniforms method.

4 Monte Carlo Inference

(i) Explain how the method of importance sampling may be used to estimate $\mu=\mathbb{E}_{f}(\theta(x))$ from a sample $x_{1}, \ldots, x_{n} \sim g(x)$, where $f(x)$ and $g(x)$ are normalised densities with common support and $\theta(x)$ denotes any general scalar function of x.
(ii) How would your description in (i) change if the normalisation constant for f and/or g were unknown?
(iii) Show that the variance of the importance sampling estimator

$$
\hat{\mu}_{g}=\frac{1}{n} \sum_{i=1}^{n} \frac{f\left(x_{i}\right)}{g\left(x_{i}\right)} \theta\left(x_{i}\right)
$$

is given by

$$
\operatorname{Var}\left(\hat{\mu}_{g}\right)=\frac{1}{n} \int \frac{f^{2}(x) \theta^{2}(x)}{g(x)} d x-\frac{\mu^{2}}{n} .
$$

(iv) Suppose that $f(x)=\frac{1}{\pi\left(1+x^{2}\right)}$ and $\mu=\mathbb{P}_{f}(X \geqslant k)$. What function $\theta(x)$ could be used to estimate μ via importance sampling?
(v) Take $g(x) \propto 1$, for $0 \leqslant x \leqslant k$. Show that

$$
\frac{1}{2}-\frac{k}{n} \sum_{i=1}^{n} \frac{1}{\pi\left(1+x_{i}^{2}\right)}
$$

is an importance sampling estimate for μ with finite variance, where $x_{1}, \ldots, x_{n} \sim g(x)$.
(vi) Describe the method of antithetic variables to improve Monte Carlo estimation. How could it be used to improve the estimator in (v) ?

5 Monte Carlo Inference

Suppose we observe data $x_{i j t}, i=1, \ldots, I, j=1,2$ and $t=1,2$ which we model by assuming that

$$
x_{i j t} \sim \operatorname{Poisson}\left(\lambda_{j t}\right)
$$

where

$$
\log \lambda_{j t}=\mu+\alpha_{j}+\beta_{t}
$$

(i) What does it mean when we say that "we set $\alpha_{1}=\beta_{1}=0$ for identifiability"?

Adopting the identifiability constraint in (i) and taking $\theta=\exp \mu$ and priors,

$$
\theta \sim \Gamma(a, b), \quad \alpha_{2} \sim N\left(0, \sigma_{1}^{2}\right), \quad \beta_{2} \sim N\left(0, \sigma_{2}^{2}\right)
$$

answer each of the following questions.
(ii) What is the posterior conditional distribution for θ ?
(iii) How would you update the parameter μ in an MCMC algorithm to sample from the posterior distribution $\pi\left(\mu, \alpha_{2}, \beta_{2} \mid \mathbf{x}\right)$?
(iv) Why would you use a Metropolis Hastings update for α_{2} and β_{2} ? What might be a sensible proposal and why?
(v) Explain how you would introduce a Reversible Jump MCMC step to decide whether or not to include the constant term μ in the model.
(vi) How would you use Reversible Jump MCMC to determine the posterior probability that $\alpha_{1}=\alpha_{2}=0$?

6 Monte Carlo Inference

Suppose 120 individuals are each assigned to 4 political parties (L, C, D \& O) with probabilities $\left(\frac{1}{4}-\frac{\theta}{4}, \frac{1}{6}-\frac{\theta}{6}, \frac{\theta}{12}, \frac{7}{12}+\frac{\theta}{3},\right)$ respectively.
(i) Show that the MLE for θ is a solution to

$$
\theta^{2}\left(-4 x_{1}-4 x_{2}-4 x_{3}-4 x_{4}\right)+\theta\left(-7 x_{1}-7 x_{2}-3 x_{3}+4 x_{4}\right)+7 x_{3}=0
$$

where $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ are the numbers observed in categories ($\mathrm{L}, \mathrm{C}, \mathrm{D} \& \mathrm{O}$) respectively. (ii) Why might it be useful to divide the fourth cell into two with probabilities $\frac{7}{12}$ and $\frac{\theta}{3}$?
(iii) Describe the EM algorithm for maximising a likelihood in the presence of "missing data".
(iv) Given data ($x_{1}=20, x_{2}=10, x_{3}=5, x_{4}=85$) derive an EM algorithm for estimating θ.

