
MATHEMATICAL TRIPOS Part III

Thursday 29 May, 2003 1:30 to 4:30

PAPER 43

Time Series and Monte Carlo Inference

Attempt FOUR questions.

There are six questions in total.

The questions carry equal weight.

Note: The following properties of the Inverse Gamma and Beta distributions may
be used without proof. If X ∼ Γ−1(a, b), then

fX(x) =
ba

Γ(a)
x−(a+1)e−b/x x > 0

and E(x) =
b

a− 1
, with Var(x) =

b2

(a− 1)2(a− 2)
for a > 2.

If X ∼ β(a, b), then

fX(x) =
Γ(a + b)
Γ(a)Γ(b)

xa−1(1− x)b−1 0 6 x 6 1

and
E(x) =

a

a + b
, with Var(x) =

ab

(a + b)2(a + b + 1)

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1 Monte Carlo Inference

(a) Let f and g be probability density functions and set

M = sup
x∈R

(
f(x)
g(x)

)
(1)

(i) Describe the rejection sampling algorithm for generating observations from f using
a set of observations from g.

(ii) Prove that this rejection sampling algorithm obtains observations from f .

(iii) Calculate the probability that an observation drawn from g is rejected. Hence
deduce that this rejection sampling algorithm is optimised for M given above in
equation (1).

(b) Suppose we wish to sample from the distribution with density function,

f(x) ∝ xα−1 exp(−xβ)

defined over the region (a,∞) where 0 < a < α/β and α > 1. Then, let the sampling
distribution have density

g(x) ∝ x−(b+1),

for x ∈ (a,∞).

(i) Show that the optimal value of M is(
α + b

β

)α+b

exp(−(α + b))
(

bab

∫ ∞
a

xα−1 exp(−xβ) dx

)−1

.

(ii) Using the method of inversion, describe how we could sample from g.

(iii) Suppose that we generate 100 observations from g. Derive an expression for the
probability that at least half of these observations are accepted to be from f .
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2 Monte Carlo Inference

(i) Describe the bootstrap method for estimating the standard error of an estimator θ̂ of
some parameter θ(F ), on the basis of a random sample x1, . . . , xn from F . Your description
should include the form of the empirical estimator F̂ of F , used in the algorithm.

Show that given a sample of n distinct observations, the probability that any
subsequent bootstrap sample has at least one repeated value is given by

1−
n−1∏
j=0

(
1− j

n

)
.

(ii) Let Xi, i = 1, . . . , n denote a set of n independent random variables from a uniform
U [0, θ] distribution, and consider the functional

G(X, θ) =
n
(
θ −X(n)

)
θ

,

where X(n) = max(X1, . . . , Xn).

By using the fact that
(
1− x

n

)n

→ e−x as n →∞ or otherwise, show that for large

n, G(X, θ) has an exponential distribution.

Describe the plug-in principle and use it to argue that

G(Y, θ̂) =
n(X(n) − Y(n))

X(n)

is a bootstrap realisation of G(X, θ), given a bootstrap sample Y(Y1, . . . , Yn), selected
randomly with replacement from X.

Finally, show that if θ̂ denotes the MLE for θ, then, as n →∞,

P(G(Y, θ̂) = 0) → 1− exp(−1).

Explain what this last result tells you about the suitability of the bootstrap method for
this particular functional.
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3 Monte Carlo Inference

Consider the mixture distribution density,

f(x) =
k∑

i=1

ωifi(x),

where fi ∼ N(µi, σ
2
i ), ωi is the corresponding weight for density fi, i = 1, . . . , k (k > 2)

and
k∑

i=1

ωi = 1. For each i = 1, . . . , k the priors on the parameters are independent of each

other, such that
µi ∼ N(0, σ2) ; σi

2 ∼ Γ−1(α, β)
and for the mixture weights, ω = {ω1, . . . , ωk} we have ω ∼ Dirichlet (ε), with
corresponding density function,

f(ω) ∝
k∏

i=1

ωεi−1
i

for εi > 0, i = 1, . . . , k such that
k∑

i=1

ωi = 1.

(a) (i) Calculate the posterior density of the parameters θ = {µ1, . . . , µk, σ2
1 , . . . , σ2

k,ω}
given the data, x = {x1, . . . , xn}, up to proportionality.

(ii) Describe how we may update each µi using the Metropolis Hastings algorithm.

(iii) Suggest a Metropolis Hastings updating procedure for each σ2
i , using a

symmetric random walk proposal distribution, and give an explicit expression for
the corresponding acceptance probability.

(iv) Describe an independent Metropolis Hastings algorithm for updating the
mixture weights ω, once again giving the corresponding acceptance probability.

(b) An alternative approach for sampling from the posterior distribution is to use a
data augmentation approach, and introduce the auxiliary variables z = {z1, . . . , zn}
where zj ∈ {1, 2, . . . , k} indicates which density the data xj is drawn from. We treat
z as missing data and construct the joint posterior distribution over the parameters
θ and z. The corresponding posterior distribution is given by

π(θ, z|x) ∝
n∏

j=1

ωzj

1√
2πσ2

zj

exp

(
−

(xj − µzj )
2

2σ2
zj

)

×
k∏

i=1

[
exp

(
− (µi − µ)2

2σ2

)
(σ2

i )−(α+1) exp(−βσ2
i )ωεi−1

i

]
.

(i) Describe how we can use the Gibbs sampler to update each µi, σ
2
i and ω.

(ii) By calculating the conditional posterior probability that observation xj comes
from density i or otherwise, describe how we can sample zj from its posterior
conditional distribution.

(c) Discuss the practical implementation issues involved with the approaches outlined
in (a) and (b).
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4 Monte Carlo Inference

Describe the annealing algorithm for minimising some function f(θ) with respect
to θ.

Suppose that we observe data x1, . . . , xm and that we wish to decide whether a
Binomial, Bin(n, p) (for fixed n), or a Normal, N(µ, σ2), provides the best model for these
data. Calculate the MLE’s for p, µ and σ2.

Derive an annealing algorithm to fit the Normal model using Gibbs updates. Hence,
show that the annealing algorithm converges to the MLE in this case.

Now calculate the Boltzmann distribution with f(p) equal to the log-likelihood
under the Binomial model and show that this converges to a point mass at the MLE as
the temperature decreases.

Finally, calculate the form of the AIC statistic for each model. Hence describe how
your annealing algorithm can be extended to distinguish between the two models. Make
clear (and fully describe) any proposal distributions, Jacobian terms and acceptance ratios
that you need, for your trans-dimensional simulated annealing algorithm.

5 Time Series

Consider the time series data y1, y2, . . . , yT , where T = 2m + 1. Let ωj = 2πj/T ,
j = 1, . . . ,m. Motivate and interpret the periodogram,

I(ωj) =
1

πT

[( T∑
t=1

yt cos(ωjt)
)2

+
( T∑

t=1

yt sin(ωjt)
)2
]

, j = 1, . . . ,m.

Show that if {yt} is Gaussian white noise with variance σ2 then I(ω1), . . . , I(ωm) are
independent

(
σ2/π

)
χ2

2/2. Deduce that I(ω) is an unbiased but not consistent estimator of
the spectrum. Assuming that the spectal density f(ω) is smooth, explain how to construct
a consistent estimator of f(ω).

Consider the hypothesis that the time series y1, y2, . . . , yT is purely random.
Describe the turning point test of this hypothesis. Show that for all T large enough the
number of turning points PT has mean 2(T − 2)/3 and variance (16T − 29)/90.

Hint: you may use without proof the following facts: for j, k ∈ {1, . . . ,m}

T∑
t=1

cos(ωjt) cos(ωkt) =
T∑

t=1

sin(ωjt) sin(ωkt) = (T/2)δjk,

T∑
t=1

cos(ωjt) =
T∑

t=1

sin(ωjt) =
T∑

t=1

cos(ωjt) sin(ωkt) = 0.
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6 Time Series

Let Xt be defined via

Xt = φXt−1 + εt + θεt−1,

where φ and θ are some constants and ε is a white noise process of variance σ2. Specify
conditions on φ and θ under which X is a stationary invertible ARMA(1,1) process.

Compute the Wold representation, the spectral density and autocovariance function
of X.

Determine the linear least-square predictor of Xt in terms of Xt−1, Xt−2, . . . .
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