MATHEMATICAL TRIPOS
 Part III

PAPER 24

THREE-MANIFOLDS

Attempt THREE questions.
There are $\boldsymbol{F I V E}$ questions in total.
The questions carry equal weight.

STATIONERY REQUIREMENTS
Cover sheet
Treasury Tag
Script paper

SPECIAL REQUIREMENTS None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (a) Given two non-zero coprime integers p and q, define the lens space $\mathcal{L}(p, q)$. Write down its fundamental group, giving a brief justification for your answer.
(b) Explain how to associate a 3-manifold M_{A} to a matrix

$$
A=\left(\begin{array}{cc}
-q & s \\
p & r
\end{array}\right)
$$

in $S L(2, \mathbb{Z})$. Prove carefully that $M_{A} \cong \mathcal{L}(p, q)$ whenever p and q are non-zero coprime integers.
(c) Prove that the lens spaces $\mathcal{L}(7,2)$ and $\mathcal{L}(7,3)$ are homeomorphic.

2 (a) Define what it means for a closed connected orientable 3-manifold M to be (i) irreducible; (ii) prime; (iii) geometrizable; and (iv) of Heegaard genus g.
(b) Prove that $S^{1} \times S^{2}$ is prime but not irreducible, and that it is the only closed connected orientable 3-manifold with this property.
(c) Let H_{1} and H_{2} be two handlebodies each of genus two. Suppose that α and β are two simple closed curves on ∂H_{1} each of which bounds an embedded disc in H_{1}, such that cutting H_{1} along these discs produces a 3-ball. Similarly, let γ and δ be two simple closed curves on ∂H_{2} each of which bounds an embedded disc in H_{2}, such that cutting H_{2} along these discs produces a 3 -ball. Suppose that ϕ is a homeomorphism from ∂H_{1} to ∂H_{2} such that $\phi(\alpha)=\gamma$ and $\phi(\beta)$ is disjoint from γ and intersects δ once. Consider an orientable manifold M of Heegaard genus two which is obtained by gluing H_{1} to H_{2} via this homeomorphism ϕ. Prove that such a manifold M is geometrizable.

You should quote carefully any results that you use.

3 (a) Define carefully what is meant by (i) two embeddings of S^{1} in S^{3} being ambient isotopic; (ii) a link diagram of a link of a finite disjoint union of copies of S^{1} in S^{3}.
(b) Define the Kauffman bracket $\langle D\rangle$ of a link diagram D. Giving D an orientation, define the Jones polynomial of D and prove carefully that it is an invariant of the oriented link represented by D.
(c) Let K denote the four-crossing figure-eight knot embedded in S^{3}. Prove that its Jones polynomial in $\mathbb{Z}\left[t^{1 / 2}, t^{-1 / 2}\right]$ is symmetric under the map $t \mapsto t^{-1}$.
(d) Calculate the fundamental group of the figure-eight knot complement $S^{3}-K$, simplifying this to a one-relator presentation.

4 (a) Let S be a closed orientable surface of genus $g \geqslant 1$ and let h be an orientationpreserving homeomorphism of S to itself. Define what it means for h to be a Dehn twist.
(b) State precisely the Dehn-Lickorish theorem concerning homeomorphisms of a compact orientable surface S. Use this theorem to prove the Fundamental Theorem of Dehn Surgery.
(c) Let L be the link in S^{3} consisting of two linked but unknotted circles and suppose that N_{L} is a small regular neighbourhood of L consisting of two disjoint solid tori U_{1} and U_{2}. For each $i \in\{1,2\}$ let α_{i} be a non-trivial simple closed curve on ∂U_{i} such that α_{i} bounds an embedded disc in $S^{3}-U_{i}$. Explain why each α_{i} is unique up to isotopy.
(d) Let M be the manifold obtained from $S^{3}-N_{L}$ by attaching solid tori V_{1} and V_{2} to ∂N_{L} such that the meridian of V_{i} is identified with α_{i}, for $i=1$ and $i=2$. What is M ? Justify your answer.

5 (a) Let Γ be a finitely generated group. Define what it means for Γ to be a Kleinian group.
(b) For a finitely generated Kleinian group Γ, define the limit set $\Lambda(\Gamma)$ of Γ and prove that this definition is independent of any arbitrary choices you may have made.
(c) We say that a Kleinian group is non-elementary if $\Lambda(\Gamma)$ contains at least three points. Let Γ be a non-elementary Kleinian group and write S_{∞}^{2} for the boundary sphere at infinity of \mathbb{H}^{3}. Prove that every non-empty closed subset of S_{∞}^{2} invariant under the action of Γ contains $\Lambda(\Gamma)$.
(d) Deduce that any infinite proper normal subgroup Γ^{\prime} of Γ satisfies $\Lambda\left(\Gamma^{\prime}\right)=\Lambda(\Gamma)$.
(e) Give an example of a finitely generated non-elementary Kleinian group Γ for which \mathbb{H}^{3} / Γ is not a hyperbolic 3 -manifold, briefly justifying your answer.

