

MATHEMATICAL TRIPOS Part III

Monday 13 June, 2005 1.30 to 4.30

PAPER 86

VALUE DISTRIBUTION OF ANALYTIC FUNCTIONS

Attempt **THREE** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

2

1 State and prove the argument principle for holomorphic maps.

Let f and (f_n) for $n \in \mathbb{N}$ be holomorphic maps on a domain $\Omega \subset \mathbb{C}$ with f_n converging to f locally uniformly on Ω . Assume that f is not constant. If $f(z_o) = 0$ for some point $z_o \in \Omega$, show that there are points $z_n \in \Omega$, for n sufficiently large, with

 $z_n \to z_o$ as $n \to \infty$ and $f_n(z_n) = 0$.

If $f(z_o) = f'(z_o) = 0$, can we always choose the points z_n so that $f_n(z_n) = f'_n(z_n) = 0$ for sufficiently large n?

2 Define the hyperbolic metric on \mathbb{D} and explain when a Riemann surface has a hyperbolic metric. Prove that a holomorphic map $f : \mathbb{D} \to \mathbb{D}$ is a contraction for the hyperbolic metric. State and prove a similar result for analytic maps $g : R \to S$ between two Riemann surfaces where S has a hyperbolic metric.

Let $f : \mathbb{D} \to \mathbb{D}$ be a holomorphic map with $f(z_o) = w_o$. Show that f may be written as

$$f(z) = \frac{(z - z_o)h(z) + w_o(1 - \overline{z_o}z)}{(z - z_o)\overline{w_o}h(z) + (1 - \overline{z_o}z)}$$

for some holomorphic function $h : \mathbb{D} \to \mathbb{C}$ with $\sup\{|h(z)| : z \in \mathbb{D}\} \leq 1$.

Let \mathcal{F} be the set of all holomorphic functions $f: \mathbb{D} \to \mathbb{D}$ with $f(z_o) = w_o$. Show that

$$\Delta(z) = \{ f(z) : f \in \mathcal{F} \}$$

is a closed disc in \mathbb{D} for each $z \in \mathbb{D}$.

3 Define the deficiency $\delta(a)$ and ramification index $\theta(a)$ for a point $a \in \mathbb{P}$.

Show that the exponential function $e:z\mapsto e^z$ has Nevanlinna characteristic $T_e(R)$ with

$$T_e(R) \sim cR$$

for some constant c > 0. If $U : \mathbb{P} \to \mathbb{P}$ is a rational function of degree d, find a similar formula for the Nevanlinna characteristic of $f = U \circ e$.

Using the above result, or otherwise, construct a meromorphic function $f : \mathbb{C} \to \mathbb{P}$ and a point $a \in \mathbb{P}$ for which both $\delta(a)$ and $\theta(a)$ are non-zero.

Paper 86

3

4 Explain what is meant by the *order* ord f of a meromorphic function $f : \mathbb{C} \to \mathbb{P}$ and the *order* of the counting function N(R; a).

Suppose that the meromorphic function f has finite order. Show how to deduce from Nevanlinna's Theorems that the order of N(R; a) must be equal to the order of fexcept for at most two exceptional values of a. Give an example to show that there can be exceptional values.

Let $U : \mathbb{P} \to \mathbb{P}$ be a Möbius transformation. Prove that the order of $U \circ f$ is the same as that of f. Prove that the sum $f = f_1 + f_2$ of two meromorphic functions satisfies

ord $f \leq \max \{ \operatorname{ord} f_1, \operatorname{ord} f_2 \}$.

Show that, when $\operatorname{ord} f_1 \neq \operatorname{ord} f_2$ then $\operatorname{ord} f = \max{\operatorname{ord} f_1, \operatorname{ord} f_2}$ but, when $\operatorname{ord} f_1 = \operatorname{ord} f_2$, the inequality may be strict.

5 Prove that a continuously differentiable, increasing function $\phi : [0, \infty) \to [0, \infty)$ satisfies

$$\phi'(x) \leqslant \phi(x)^2$$

except on a set $I \subset [0, \infty)$ with finite measure. Explain briefly how this result is used in the proof of Nevanlinna's Second Theorem.

Let $f : \mathbb{C} \to \mathbb{P}$ be a meromorphic function that is not rational. Show that, for any five distinct points a_1, a_2, a_3, a_4, a_5 in \mathbb{C} there must be at least one with $f(z) - a_k$ having a simple zero (that is, a zero of degree 1). Need there be more than 1 simple zero? Need there be more than 1 point a_k with $f(z) - a_k$ having a simple zero? (You may assume any result from the course, provided that it is stated clearly.)

Paper 86

4

6 Let $g: \mathbb{D} \to \mathbb{D}$ be a holomorphic map from the unit disc to itself. Write

$$||g'(z)|| = \frac{2|g'(z)|}{1-|g(z)|^2}$$
.

The hyperbolic characteristic $T_{\mathbb{D}}(R)$ is given by

$$T_{\mathbb{D}}(R) = \int_{D(0,R)} \left(\frac{1}{2\pi} \log \frac{R}{|z|}\right) \|g'(z)\|^2 d\mathbb{A}_{\mathbb{C}}(z)$$

and the counting function for critical points is

$$N_1(R) = \sum \left\{ (\deg g(z) - 1) \log \frac{R}{|z|} : |z| < R \text{ and } g'(z) = 1 \right\} .$$

Prove that

$$T_{\mathbb{D}}(R) + N_1(R) = \int_0^{2\pi} \log \|g'(Re^{i\theta})\| \frac{d\theta}{2\pi} - \log \|g'(0)\|.$$

Deduce that

$$T_{\mathbb{D}}(R) + N_1(R) \leqslant C_1 \rho(R) + C_2$$

where $\rho(R)$ is the hyperbolic distance in \mathbb{D} from 0 to R and C_1, C_2 are constants that may depend on g but not on R.

END OF PAPER