PAPER 9

THE VALUE DISTRIBUTION OF ANALYTIC FUNCTIONS

Answer any THREE questions. The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 State and prove the Poisson-Jensen formula.
Let $\left(z_{n}\right)$ be an infinite sequence of distinct points in the simply-connected domain $\Omega \subset \mathbb{C}$. Show that the following conditions are equivalent:
(i) There is a bounded, analytic function $f: \Omega \rightarrow \mathbb{C}$ with zeros at each of the points $\left(z_{n}\right)$ and nowhere else in Ω.
(ii) The domain Ω has a hyperbolic metric ρ and, for any $w \in \Omega$, the series

$$
\sum \exp \left\{-\rho\left(w, z_{n}\right)\right\}
$$

converges.
By considering the punctured disc $\{z \in \mathbb{C}: 0<|z|<1\}$, or otherwise, show that these conditions need not be equivalent when Ω is not simply-connected.

2 State Nevanlinna's First and Second Fundamental Theorems for a function meromorphic on the unit disc.

Prove that a meromorphic function $f: \mathbb{D} \rightarrow \mathbb{C}_{\infty}$ has bounded characteristic if and only if f is the ratio of two bounded analytic functions on the unit disc.

Let $g: \mathbb{D} \rightarrow \mathbb{C}$ be an analytic function. Show that the characteristic of g may be bounded without g itself being bounded.

Suppose that, for some p with $1<p<\infty$ and some constant C, we have

$$
\int_{0}^{2 \pi}\left(1+\left|g\left(r e^{i \theta}\right)\right|^{2}\right)^{p / 2} \frac{d \theta}{2 \pi}<C \quad \text { for } \quad 0<r<1
$$

By using the fact that the logarithm is concave, or otherwise, show that g must have bounded characteristic.

3 Let $A=\{z \in \mathbb{C}: 0<|z|<2\}$ and let $f: A \rightarrow \mathbb{C}_{\infty}$ be a meromorphic function. For each $a \in \mathbb{C}_{\infty}$ that does not lie on the curve $\{f(z):|z|=1\}$, define

$$
\begin{aligned}
N(r ; a) & =\sum\left\{\left(\log \frac{|z|}{r}\right) \operatorname{deg} f(z): f(z)=a \text { and } 1>|z| \geqslant r\right\} \\
m(r ; a) & =\int_{0}^{2 \pi} \log \frac{k\left(f\left(e^{i \theta}\right), a\right)}{k\left(f\left(r e^{i \theta}\right), a\right)} d \theta \\
T(r) & =\frac{1}{4 \pi} \int_{\{1>|z|>r\}}\left(\log \frac{|z|}{r}\right)\left(\frac{2\left|f^{\prime}(z)\right|}{1+|f(z)|^{2}}\right)^{2} d x d y ;
\end{aligned}
$$

where $z=x+i y$ and $0<r \leqslant 1$. Show that there is a function $I(a)$, independent of r, with

$$
T(r)=I(a) \log \frac{1}{r}+N(r ; a)+m(r ; a) .
$$

Prove that

$$
\liminf _{r \rightarrow 0} \frac{T(r)}{\log 1 / r}
$$

is finite if and only if f has a removable singularity (or a pole) at 0 .

4 State Ahlfors' Second Fundamental Theorem.
Show how to derive from this Ahlfors' Five Islands Theorem for meromorphic functions $f: \mathbb{C} \rightarrow \mathbb{C}_{\infty}$. Give an example to show that there is no corresponding Four Islands Theorem.
$5 \quad$ Let S be the unit sphere in \mathbb{R}^{3}. Let $L(\gamma)$ be the length of a curve γ on S and $\mathbb{A}(U)$ the area of $U \subset S$, both relative to the spherical metric. Prove that there is a constant κ with

$$
\mathbb{A}(U) \mathbb{A}\left(U^{\prime}\right) \leqslant \kappa L(\partial U)^{2}
$$

for all subsets U of S with complement $U^{\prime}=S \backslash U$ and a smooth boundary ∂U.
Let $i: V \hookrightarrow S$ be the inclusion map for a compact subset V of S which has a smooth boundary. Show that, for any non-empty, open subset D of S we have

$$
\left|\frac{\mathbb{A}(V)}{\mathbb{A}(S)}-\frac{\mathbb{A}(V \cap D)}{\mathbb{A}(D)}\right| \leqslant C \frac{L(\partial V)^{2}}{\mathbb{A}(S) \mathbb{A}(D)}
$$

for some constant C.
Now consider another smooth Riemannian metric on S and let $\widetilde{\mathbb{A}}(U)$ denote the area of a set U relative to this new metric. Show that there is a smooth function $\theta: S \rightarrow(0, \infty)$ with

$$
\widetilde{\mathbb{A}}(U)=\int_{U} \theta(x) d \mathbb{A}(x)=\int_{0}^{\infty} \mathbb{A}\left(U \cap D_{t}\right) d t
$$

for $D_{t}=\{x \in S: \theta(x)>t\}$. Hence show that

$$
\left|\frac{\mathbb{A}(V)}{\mathbb{A}(S)}-\frac{\widetilde{\mathbb{A}}(V)}{\widetilde{\mathbb{A}}(S)}\right| \leqslant C^{\prime} \frac{L(\partial V)^{2}}{\mathbb{A}(S) \widetilde{\mathbb{A}}(S)}
$$

for some constant C^{\prime}.

