PAPER 53

THE STANDARD MODEL

Attempt THREE questions.
There are FOUR questions in total.
The questions carry equal weight.

STATIONERY REQUIREMENTS
Cover sheet
Treasury tag
Script paper

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let g_{i} with $i=1,2,3$ denote the coupling constants for the Standard Model gauge group factors $U(1)_{Y}, S U(2), S U(3)$, respectively. The renormalisation group equation for each gauge coupling is, to one-loop order,

$$
\mu \frac{d g_{i}}{d \mu}=\frac{\beta_{i}}{16 \pi^{2}} g_{i}^{3}
$$

where μ is the renormalisation scale and β_{i} is the one-loop beta-function coefficient (a real constant). Use this equation to relate $\alpha_{i}\left(M_{Z}\right)$ to $\alpha_{i}(\mu)$ where $\alpha_{i} \equiv g_{i}^{2} / 4 \pi$.

Grand Unified Theories predict that at some scale $\mu=M_{G U T}$,

$$
\frac{5}{3} \alpha_{1}\left(M_{G U T}\right)=\alpha_{2}\left(M_{G U T}\right)=\alpha_{3}\left(M_{G U T}\right) .
$$

Assuming this, derive

$$
\frac{1}{\alpha_{3}\left(M_{Z}\right)}=\frac{1}{\alpha_{2}\left(M_{Z}\right)}+\frac{\beta_{3}-\beta_{2}}{\frac{3}{5} \beta_{1}-\beta_{2}}\left[\frac{3}{5 \alpha_{1}\left(M_{Z}\right)}-\frac{1}{\alpha_{2}\left(M_{Z}\right)}\right]
$$

Write down a table giving the field content of one family of matter in the Standard Model together with one Higgs field. State clearly the spin and chirality (if appropriate) of each field and specify the representations of $U(1)_{Y}, S U(2)$ and $S U(3)$ under which the fields transform.

For an $S U(N)$ gauge theory with two-component (Weyl) fermions and complex scalars occurring in n_{f} and n_{s} copies of the fundamental (defining) representation respectively, the one-loop beta-function coefficient is

$$
\beta_{N}=-\frac{11}{3} N+\frac{1}{3} n_{f}+\frac{1}{6} n_{s}
$$

(there are no contributions from fields invariant under the gauge group). For $U(1)_{Y}$,

$$
\beta_{1}=\frac{2}{3} \sum_{f} Y_{f}^{2}+\frac{1}{3} \sum_{s} Y_{s}^{2}
$$

where Y_{f} and Y_{s} are the hypercharges of each two-component fermion and complex scalar. Use this information to calculate β_{1}, β_{2} and β_{3} in the Standard Model, indicating where each contribution comes from.
[The electric charge is $Q=T_{3}+Y$, where T_{3} is the diagonal $S U(2)$ generator and Y the hypercharge.]

2 The transformation rule for gauge fields is

$$
T^{a} A_{\mu}^{a} \rightarrow U T^{a} A_{\mu}^{a} U^{-1}+\frac{i}{g}\left(\partial_{\mu} U\right) U^{-1}
$$

where g is the gauge coupling. The covariant derivative is

$$
D_{j \mu}^{i}=\partial_{\mu} \delta_{j}^{i}+i g A_{\mu}^{a}\left(T^{a}\right)_{j}^{i}
$$

and the field strength is defined by

$$
F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}-g f_{a b c} A_{\mu}^{b} A_{\nu}^{c} .
$$

What is U, and how can it be written explicitly in terms of representation matrices T^{a} ?
In the case of QCD, how does a quark field ψ transform under the relevant gauge symmetry; what is the dimension of its representation; and what does that mean about the size of the matrices T^{a} ? Write down the part of the QCD lagrangian which involves only the gluons, and hence derive the 3 -gluon and 4 -gluon interaction terms

$$
\mathcal{L}_{\text {glue }}=-\frac{g^{2}}{4} f_{a b c} f_{a d e} A_{\mu}^{b} A_{\nu}^{c} A^{d \mu} A^{e \nu}+g f_{a b c} \partial_{\mu} A_{\nu}^{a} A^{b \mu} A^{c \nu}
$$

Now let g and g^{\prime} denote the couplings corresponding to the electroweak gauge group $S U(2) \times U(1)_{Y}$. Write down the part of the Lagrangian which contains the electroweak covariant derivative acting on a left-handed quark doublet, expressing your answer in terms of the hypercharge gauge boson B_{μ}, the $S U(2)$ gauge bosons $\mathcal{A}_{\mu}^{\alpha}$, the Pauli matrices σ^{α} and quark fields u_{L} and d_{L}. The physical gauge bosons are defined by

$$
W^{\mu}=\left(\mathcal{A}_{1}^{\mu}-i \mathcal{A}_{2}^{\mu}\right) / \sqrt{2}, \quad Z^{\mu}=\cos \theta_{w} \mathcal{A}_{3}^{\mu}-\sin \theta_{w} B^{\mu}, \quad \mathbf{A}^{\mu}=\cos \theta_{w} B^{\mu}+\sin \theta_{w} \mathcal{A}_{3}^{\mu}
$$

where $\tan \theta_{w}=g^{\prime} / g$. Show that the electromagnetic interaction terms for u_{L} and d_{L} are

$$
\mathcal{L}_{e m}=-\frac{2}{3} e \bar{u}_{L} \mathbf{A}^{\mu} \gamma_{\mu} u_{L}+\frac{1}{3} e \bar{d}_{L} \mathbf{A}^{\mu} \gamma_{\mu} d_{L}
$$

where e is the electromagnetic coupling, which should be defined in terms of g and θ_{w}.

$$
\left[\sigma^{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma^{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right]
$$

$3 \quad$ An approximate description of pion decay $\pi^{-}(p) \rightarrow e^{-}(k)+\bar{\nu}_{e}(q)$ is given by the Lagrangian

$$
\mathcal{L}=-\frac{G_{F}}{\sqrt{2}} J_{\mu}^{\dagger} J^{\mu},
$$

where $J^{\mu} \equiv J_{H}^{\mu}+J_{L}^{\mu}$ has both hadronic and leptonic parts. The hadronic current is

$$
J_{H}^{\mu}=\cos \theta_{C} \bar{u} \gamma^{\mu}\left(1-\gamma_{5}\right) d \equiv V_{H}^{\mu}-A_{H}^{\mu},
$$

where V_{H}^{μ} and A_{H}^{μ} are vector and axial currents respectively and θ_{C} is the Cabibbo angle. The leptonic current is

$$
J_{L}^{\mu}=\bar{\nu}_{e} \gamma^{\mu}\left(1-\gamma_{5}\right) e .
$$

Explain briefly how the constant G_{F} emerges from more fundamental Standard Model parameters.

Show that the matrix element for pion decay may be written

$$
\mathcal{M}=\frac{G_{F}}{\sqrt{2}} \bar{u}_{e}(k) \gamma^{\mu}\left(1-\gamma_{5}\right) v_{\nu_{e}}(q)\langle 0| A_{H \mu}\left|\pi^{-}(p)\right\rangle .
$$

Setting $\langle 0| \bar{u} \gamma^{\mu} \gamma_{5} d\left|\pi^{-}(p)\right\rangle=i \sqrt{2} F_{\pi} p^{\mu}$, where F_{π} is a non-perturbative parameter (which can be measured), use the formula

$$
\Gamma=\frac{1}{2 m_{\pi}} \int \prod_{i}\left(\frac{d^{3} q_{i}}{(2 \pi)^{3} 2 E_{q_{i}}}\right)(2 \pi)^{4} \delta^{(4)}\left(p-\sum_{i} q_{i}\right) \sum_{s}|\mathcal{M}|^{2}
$$

for decay into particles of momenta q_{i} and spins s, to derive the partial decay width

$$
\Gamma\left(\pi^{-} \rightarrow e^{-} \bar{\nu}_{e}\right)=\frac{m_{\pi}}{4 \pi} m_{e}^{2}\left(1-\frac{m_{e}^{2}}{m_{\pi}^{2}}\right)^{2} G_{F}^{2} F_{\pi}^{2} \cos ^{2} \theta_{C}
$$

What is the ratio of this expression to $\Gamma\left(\pi^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}\right)$? What does the agreement of experimental data with this ratio indicate?
[You should assume the pion is odd under parity and that neutrinos are massless. You will find it helpful to work in the centre of mass frame and to use the gamma-matrix identities

$$
\gamma_{5}^{2}=1, \quad \operatorname{Tr}(\gamma \cdot k \gamma \cdot q)=4 k \cdot q, \quad \operatorname{Tr}\left(\gamma_{5} \gamma \cdot k \gamma \cdot q\right)=\operatorname{Tr}\left(\gamma^{\mu}\right)=\operatorname{Tr}\left(\gamma_{5} \gamma^{\mu}\right)=0
$$

as well as the result $\int d x \delta(f(x))=\sum_{x_{i}}\left|f^{\prime}\left(x_{i}\right)\right|^{-1}$ where $f\left(x_{i}\right)=0$.]

4 The time-reversal operator \hat{T} is anti-linear, obeying

$$
\hat{T}(\alpha|\phi\rangle+\beta|\psi\rangle)=\alpha^{*} \hat{T}|\phi\rangle+\beta^{*} \hat{T}|\psi\rangle
$$

and it also satisfies $\hat{T}^{2}=1$. By making appropriate assumptions about the action of \hat{T} on momentum eigenstates, show that \hat{T} is anti-unitary, obeying

$$
\langle\hat{T} \phi \mid \hat{T} \psi\rangle=\langle\phi \mid \psi\rangle^{*} .
$$

for any states $|\phi\rangle$ and $|\psi\rangle$.
Starting from the definition of the scattering matrix, or S-matrix,

$$
S=\mathcal{T}\left(\exp \left[-i \int_{-\infty}^{\infty} d t V(t)\right]\right)
$$

(where \mathcal{T} denotes time-ordering), write down the condition on $V(t)$ for the theory to be time-reversal invariant, and show in detail that $\hat{T} S \hat{T}^{-1}=S^{\dagger}$. Explain how this leads to time-reversal invariant scattering amplitudes.

By considering the mode expansion of a complex scalar field, derive

$$
\hat{T} a(p) \hat{T}^{-1}=\eta_{T} a\left(p_{P}\right)
$$

where $a(p)$ annihilates a particle with 4 -momentum $p^{\mu}=\left(p^{0}, \mathbf{p}\right)$ and $p_{P}^{\mu} \equiv\left(p^{0},-\mathbf{p}\right)$. What is η_{T} and how can it be absorbed into the definition of the annihilation operator?

END OF PAPER

