PAPER 48

THE STANDARD MODEL

Attempt THREE questions

There are four questions in total.
The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Consider a scalar field theory with a scalar with components ϕ_{r}. The potential for the field $V(\phi)$ is invariant under infinitesimal transformations

$$
\delta \phi=i T_{a} \chi_{a} \phi, \quad a=1, \ldots \operatorname{dim} G
$$

where T_{a} are the $\operatorname{dim} G$ generators of invariance group G in the representation defined by ϕ and χ_{a} are some infinitesimal parameters. The potential has a degenerate vacuum labelled by $\Phi_{0} . t_{i}$ are the generators of H, which is the stability group for $\phi_{0} \in \Phi_{0}$, i.e.

$$
t_{i} \phi_{0}=0, \quad i=1, \ldots \operatorname{dim} H
$$

Choosing a basis for the generators such that

$$
T_{a}=\left(t_{i}, T_{\hat{a}}\right),
$$

with $T_{\hat{a}}$ orthogonal to t_{i}, prove, by expanding about the vacuum ϕ_{0}, that there are $\operatorname{dim} G-\operatorname{dim} H$ massless scalars.

If $G=O(n)$, the rotation group in n dimensions, and $H=O(n-1)$ then how many massless scalars are there in this case?

The Lagrangian for the gauge-scalar sector of the standard model may be written as,

$$
\mathcal{L}=-\frac{1}{4} \mathbf{F}^{\mu \nu} \cdot \mathbf{F}_{\mu \nu}-\frac{1}{4} G^{\mu \nu} G_{\mu \nu}+\left(D^{\mu} \phi\right)^{\dagger} D_{\mu} \phi-\frac{1}{2} \lambda\left(\phi^{\dagger} \phi-\frac{v^{2}}{2}\right)^{2}
$$

where

$$
\begin{aligned}
\mathbf{F}_{\mu \nu} & =\partial_{\mu} \mathbf{A}_{\nu}-\partial_{\nu} \mathbf{A}_{\mu}+g \mathbf{A}_{\mu} \times \mathbf{A}_{\nu} \quad, \quad G_{\mu \nu}=\partial_{\mu} B_{\nu}-\partial_{\nu} B_{\mu} \\
\left(D^{\mu} \phi\right) & =\left(\partial^{\mu}+i g \frac{1}{2} \mathbf{A}^{\mu}(\mathbf{x}) \cdot \sigma+i \frac{1}{2} g^{\prime} B^{\mu}(x)\right) \phi
\end{aligned}
$$

and \mathbf{A}_{μ} is the vector of $S U(2)$ gauge fields, B_{μ} is the $U(1)_{Y}$ gauge field and ϕ is a complex scalar doublet. σ_{i} are the Pauli matrices and g^{\prime} may be written as $g \tan \theta_{W}$.

Explain why the scalar doublet can be written as

$$
\phi(x)=\exp \left(-i \mathbf{n}(x) \cdot \sigma+i n_{3}(x)\right) \frac{1}{\sqrt{2}}\binom{0}{v+H(x)}
$$

where $\mathbf{n}=\left(n_{1}, n_{2}, n_{3}\right)$, and why in unitary gauge we can eliminate the fields in $\exp \left(-i \mathbf{n}(x) \cdot \sigma+i n_{3}(x)\right)$ completely.

Determine the simultaneous mass and charge eigenstates for the gauge fields by writing the scalar-boson interactions in terms of the physical fields $Z_{\mu}, W_{\mu}^{ \pm}$, and show that the photon field A_{μ} decouples from the scalar and is massless. Find also the mass of the scalar field and the the relationship between the masses m_{W} and m_{Z}.

2 The covariant derivative in the electroweak sector of the Standard Model is defined by

$$
D^{\mu}=\left(\partial^{\mu}+i g \frac{1}{2} \mathbf{A}^{\mu}(\mathbf{x}) \cdot \sigma+i Y g^{\prime} B^{\mu}(x)\right)
$$

where g is the $S U(2)$ coupling constant, g^{\prime} is the $U(1)_{Y}$ coupling constant, σ_{i} are the Pauli matrices and Y is the hypercharge. Describe the $S U(2)$ and hypercharge representations and quantum numbers for the leptons. Using

$$
W^{+\mu}=\frac{1}{\sqrt{2}}\left(A_{1}^{\mu}-i A_{2}^{\mu}\right), \quad W^{-\mu}=\frac{1}{\sqrt{2}}\left(A_{1}^{\mu}+i A_{2}^{\mu}\right)
$$

show that the interaction of the W^{+}boson with the lepton fields may be written as

$$
\mathcal{L}_{W+l e p}=-\frac{g}{2 \sqrt{2}} W^{+\mu} \bar{\nu}_{l} \gamma_{\mu}\left(1-\gamma^{5}\right) l,
$$

for each family of leptons. Write the corresponding term for the W^{-}boson. Explain briefly why the corresponding interaction term is more complicated for quarks.

Show that at low energies it is equivalent to using an effective Lagrangian density

$$
\mathcal{L}_{\mathrm{Weff}}=-\frac{G_{F}}{\sqrt{2}}\left(J^{\mu}(x)^{\dagger} J_{\mu}(x)\right),
$$

where $G_{F}=\sqrt{2} g^{2} / 8 m_{W}^{2}$.

Consider the decay

$$
\pi^{-}(p) \rightarrow e^{-}(k)+\bar{\nu}_{e}(q)
$$

The matrix element for this decay is

$$
\mathcal{M}=-\frac{G_{F}}{\sqrt{2}}\left\langle e^{-}(k) \bar{\nu}_{e}(q)\right| \bar{e} \gamma^{\alpha}\left(1-\gamma_{5}\right) \nu_{e}|0\rangle\langle 0| J_{\alpha}^{\mathrm{had} \cdot}\left|\pi^{-}(p)\right\rangle
$$

Explain why only the axial part of the hadronic current contributes to $\langle 0| J_{\alpha}^{\text {had. }}\left|\pi^{-}(p)\right\rangle$.
By considering this matrix element prove that the decay rate contains a factor $m_{e}^{2}\left(m_{\pi}^{2}-m_{e}^{2}\right)$, and hence vanishes in the limit $m_{e} \rightarrow 0$. (It is useful to use the Dirac equation for the spinors in momentum space.) Explain physically why the matrix element must vanish in this limit.
[You may use

$$
\begin{aligned}
\operatorname{tr}\{\gamma \cdot k \gamma \cdot q\} & =4 k \cdot q \\
\operatorname{tr}\left\{\gamma^{5} \gamma \cdot k \gamma \cdot q\right\} & =0 \\
\operatorname{tr}\left\{\gamma^{\mu}\right\}=\operatorname{tr}\left\{\gamma^{5} \gamma^{\mu}\right\} & =0 .]
\end{aligned}
$$

3 Under charge conjugation we assume

$$
\psi(x) \longrightarrow \psi^{C}(x), \quad \psi^{C}(x)=C \bar{\psi}(x)^{t}
$$

with t denoting transpose. The matrix C is then chosen to ensure $\psi^{C}(x)$ satisfies the Dirac equation. Prove that $C\left(\gamma^{\mu}\right)^{t} C^{-1}=-\gamma^{\mu}$. Show also that under charge conjugation $\bar{\psi}(x) \rightarrow-\psi^{t}(x) C^{-1}$. (Assume $C^{\dagger}=C^{-1}$.)

Explain why a current interaction

$$
J^{\mu} V_{\mu}=\bar{\psi}(x) \gamma^{\mu}\left(1-\gamma^{5}\right) \psi(x) V_{\mu},
$$

is not invariant under parity or charge conjugation separately but is invariant under the combined transformation.

Under a time reversal transformation $\hat{T} \psi(x) \hat{T}^{-1}=B^{-1} \psi\left(x_{T}\right)$ and $\hat{T} \bar{\psi}(x) \hat{T}^{-1}=$ $\bar{\psi}\left(x_{T}\right) B$ where $B=\gamma_{5} C$ and \hat{T} is an antilinear transformation, i.e. it takes the complex conjugate of numbers. Show that $B\left(\gamma^{0 *},-\gamma^{*}\right) B^{-1}=\left(\gamma^{0}, \gamma\right)$, and that the above current interaction is invariant under time reversal.

The K^{0} and its anti-particle \bar{K}^{0} are pseudoscalar mesons with dominant quark structure $\bar{s} d$ and $\bar{d} s$. Under $C P$ we can define

$$
\hat{C} \hat{P}\left|K^{0}\right\rangle=\left|\bar{K}^{0}\right\rangle, \quad \hat{C} \hat{P}\left|\bar{K}^{0}\right\rangle=\left|K^{0}\right\rangle
$$

The mass eigenstates of the system are the eigenvectors of the matrix

$$
M=\left(\begin{array}{cc}
\left\langle K^{0}\right| H^{\prime}\left|K^{0}\right\rangle & \left\langle K^{0}\right| H^{\prime}\left|\bar{K}^{0}\right\rangle \\
\left\langle\bar{K}^{0}\right| H^{\prime}\left|K^{0}\right\rangle & \left\langle\bar{K}^{0}\right| H^{\prime}\left|\bar{K}^{0}\right\rangle
\end{array}\right)=\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right),
$$

where H^{\prime} is an effective Hamiltonian arising from weak processes that mix $\left|K^{0}\right\rangle$ and $\left|\bar{K}^{0}\right\rangle$, and $M_{11}=M_{22}$. Draw a Feynman diagram representing one such mixing process. Show that if H^{\prime} is not invariant under $C P$ then $M_{12} \neq M_{21}$ and that the mass eigenstates are equal to the $C P=+1$ and -1 eigenstates

$$
\left|K_{1}^{0}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle+\left|\bar{K}^{0}\right\rangle\right), \quad\left|K_{2}^{0}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\right)
$$

up to small corrections proportional to

$$
\epsilon=\frac{\sqrt{M_{12}}-\sqrt{M_{21}}}{\sqrt{M_{12}}+\sqrt{M_{21}}} .
$$

[Under parity transformations P

$$
\psi(x) \rightarrow \gamma^{0} \psi\left(x_{P}\right) \quad \bar{\psi}(x) \rightarrow \bar{\psi}\left(x_{P}\right) \gamma_{0} \quad V_{\mu}(x) \rightarrow V^{\mu}\left(x_{P}\right)
$$

Under charge conjugation $C V_{\mu}(x) \rightarrow-V_{\mu}(x)$, and under time reversal $V_{\mu}(x) \rightarrow V^{\mu}\left(x_{T}\right)$]

4 Show that the total cross-section for $e^{-}\left(p_{1}\right)+e^{+}\left(p_{2}\right) \rightarrow \gamma^{*}\left(p_{1}+p_{2}=q\right) \rightarrow$ $q\left(k_{1}\right)+\bar{q}\left(k_{2}\right)$ at lowest order is equal to

$$
\frac{\mathrm{d} \sigma_{e^{-} e^{+} \rightarrow q \bar{q}}}{\mathrm{~d} \Omega}=\frac{\alpha^{2}}{4 q^{2}} Q_{q}^{2}\left(1+\cos ^{2} \theta\right)
$$

where $\alpha=e^{2} / 4 \pi, \theta$ is the angle between the outgoing quark and the axis of the incoming electron and positron in the centre of mass frame, and Q_{q} is the fractional quark charge. Show that integrating over the solid angle

$$
\sigma_{e^{-} e^{+} \rightarrow q \bar{q}}=\frac{4 \pi \alpha^{2}}{3 q^{2}} Q_{q}^{2} .
$$

You may assume that $\sqrt{q^{2}} \gg m_{q}, m_{e}$.
Explain why at leading order this means that (to a good approximation)

$$
\sigma_{e^{-} e^{+} \rightarrow \text { hadrons }}=\frac{4 \pi \alpha^{2}}{3 q^{2}} 3 \sum_{f} Q_{f}^{2},
$$

Discuss why beyond leading order the cross-section for quark-antiquark production is not a well-defined physical quantity, and how one may calculate the total hadron cross-section.

Beyond LO the cross-section may be written as

$$
\sigma_{e^{-} e^{+} \rightarrow \text { hadrons }}=\frac{4 \pi \alpha^{2}}{3 q^{2}} 3 \sum_{f} Q_{f}^{2} K\left(\alpha_{s}\left(\mu^{2}\right), q^{2} / \mu^{2}\right)
$$

where at $\mathcal{O}\left(\alpha_{s}^{2}\right)$

$$
K\left(\alpha_{s}\left(\mu^{2}\right), q^{2} / \mu^{2}\right)=1+\frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}+\frac{\alpha_{s}^{2}\left(\mu^{2}\right)}{\pi^{2}}\left(1.99-0.11 n_{f}-\pi \frac{\beta_{0}}{4 \pi} \ln \left(q^{2} / \mu^{2}\right)\right)
$$

One way of choosing the arbitrary scale μ is to demand that

$$
\frac{d K\left(\alpha_{s}\left(\mu^{2}\right), q^{2} / \mu^{2}\right)}{d \ln \mu^{2}}=0
$$

Using the renormalization group equation for the strong coupling

$$
\frac{d \alpha_{s}}{d \ln \mu^{2}}=-\frac{\beta_{0}}{4 \pi} \alpha_{s}^{2}
$$

where $\beta_{0}=11-2 / 3 n_{f}$, and n_{f} is the number of quark flavours, determine the value of μ^{2} this prescription imposes.
[You may use $\operatorname{tr}\left(\gamma_{\alpha} \gamma_{\beta} \gamma_{\gamma} \gamma_{\delta}\right)=4\left(g_{\alpha \beta} g_{\gamma \delta}+g_{\alpha \delta} g_{\beta \gamma}-g_{\alpha \gamma} g_{\beta \delta}\right)$, and

$$
\sigma=\frac{1}{4 F} \frac{1}{4} \sum_{\text {spins }} \int \frac{d^{3} \mathbf{k}_{\mathbf{1}}}{(2 \pi)^{3} 2 E_{\mathbf{k}_{\mathbf{1}}}} \frac{d^{3} \mathbf{k}_{\mathbf{2}}}{(2 \pi)^{3} 2 E_{\mathbf{k}_{\mathbf{2}}}}(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-k_{1}-k_{2}\right)|M|^{2}
$$

where the flux factor $F=4 \sqrt{\left(p_{1} \cdot p_{2}\right)^{2}-m_{1}^{2} m_{2}^{2}}=2 q^{2}$, where we let $m_{1}, m_{2} \rightarrow 0$.]

