## PAPER 63

## THE STANDARD MODEL

Attempt THREE questions.
The questions are of equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 For $\phi=\left(\phi_{1}, \ldots, \phi_{n}\right)$ a real multi-component scalar field, then assume a potential $V(\phi)$ is invariant under the action of a continuous group $G$, so that for any $g \in G$, $V(g \phi)=V(\phi)$. Suppose $\phi_{0} \neq 0$ is a particular $\phi$ for which $V$ has its minimum. Describe how the unbroken subgroup $H \subset G$ may be defined and explain how there are in general $\operatorname{dim} G-\operatorname{dim} H$ massless modes.
[You may assume that if $V\left(\phi_{0}{ }^{\prime}\right)=V\left(\phi_{0}\right)$ then $\phi_{0}{ }^{\prime}=g \phi_{0}$ for some $g \in G$.]
If $G$ is now a local gauge group, with $A_{\mu a}, a=1, \ldots, \operatorname{dim} G$, the corresponding gauge fields,the associated Lagrangian is

$$
\mathcal{L}=\frac{1}{2}\left(D^{\mu} \phi\right)^{T} D_{\mu} \phi-\frac{1}{4} F^{\mu \nu}{ }_{a} F_{\mu \nu a}-V(\phi),
$$

where $F_{\mu \nu a}$ is the associated field strength, $D_{\mu} \phi=\partial_{\mu} \phi+g A_{\mu a} T_{a} \phi$ with $T_{a}$ matrix generators of $G, T_{a}^{T}=-T_{a}$. Explain why we may impose the condition $\phi^{T} T_{a} \phi_{0}=0$. Show how the gauge fields have masses defined by the matrix $g^{2}\left(T_{a} \phi_{0}\right)^{T} T_{b} \phi_{0}$ and that $\operatorname{dim} G-\operatorname{dim} H$ gauge fields have a non zero mass. Verify also that there are now no massless scalar fields.Briefly describe the relevance of these considerations to the standard model.

2 In the standard model the interaction of the neutral vector $Z$ with fermion fields $\psi$ is described by

$$
\mathcal{L}_{I}=\frac{g}{2 \cos \theta_{W}} J_{n}^{\mu} Z_{\mu}
$$

where the neutral current is given by

$$
J_{n}^{\mu}=\bar{\psi} \gamma^{\mu}\left(\left(1-\gamma_{5}\right) T_{3}-2 \sin ^{2} \theta_{W} Q\right) \psi
$$

with $\mathbf{T}$ the generators of $S U(2)_{T}$ acting on $\psi$ and $Q$ the associated charge matrix. For the leptonic decay $Z \rightarrow \ell \bar{\ell}$ show that $J_{n}^{\mu}=\bar{\ell} \gamma^{\mu}\left(c_{V}-c_{A} \gamma_{5}\right) \ell$ where for $\ell=e, c_{V}=$ $2 \sin ^{2} \theta_{W}-\frac{1}{2}, c_{A}=-\frac{1}{2}$ and for $\ell=\nu_{e}, c_{V}=c_{A}=\frac{1}{2}$.Assuming

$$
\langle 0| Z_{\mu}(0)|Z(p)\rangle=\epsilon_{\mu}(p), \quad \sum_{Z \text { spins }} \epsilon_{\mu}(p) \epsilon_{\nu}(p)^{*}=-g_{\mu \nu}+\frac{p_{\mu} p_{\nu}}{m_{Z}^{2}},
$$

show that for $\mathcal{M}$ the amplitude for $Z \rightarrow \ell \bar{\ell}$ and neglecting any lepton masses, $\sum_{\text {spins }}|\mathcal{M}|^{2}=$ $g^{2}\left(c_{V}^{2}+c_{A}^{2}\right) m_{Z}^{2} / \cos ^{2} \theta_{W}$. Hence obtain, for $G_{F} / \sqrt{2}=g^{2} /\left(8 m_{W}^{2}\right)$,

$$
\Gamma_{Z \rightarrow \ell \bar{\ell}}=\frac{G_{F}}{\sqrt{2}} \frac{m_{Z}^{3}}{6 \pi}\left(c_{V}^{2}+c_{A}^{2}\right)
$$

[The formula for the decay width of a particle with mass $m$ is

$$
\left.\Gamma=\frac{1}{2 m} \sum_{X}(2 \pi)^{4} \delta^{4}\left(p-p_{X}\right)\left|\langle X| \mathcal{L}_{I}\right| p\right\rangle\left.\right|^{2}, \quad \sum_{X}=\prod_{\text {momenta }} \int \frac{\mathrm{d}^{3} p}{(2 \pi)^{3} 2 p^{0}} \sum_{\text {spins }} .
$$

You may also use $\left.\operatorname{tr}\left(\gamma_{\alpha} \gamma_{\beta} \gamma_{\gamma} \gamma_{\delta}\right)=4\left(g_{\alpha \beta} g_{\gamma \delta}+g_{\alpha \delta} g_{\beta \gamma}-g_{\alpha \gamma} g_{\beta \delta}\right).\right]$
$3 \quad$ For a hadron $H$ of momentum $P, P^{2}=M^{2}$, represented by the state $|P\rangle$ define

$$
\begin{aligned}
W^{\mu \nu}(q, P) & =\frac{1}{4 \pi} \sum_{X}(2 \pi)^{4} \delta^{4}\left(P-p_{X}-q\right)\langle P| J^{\mu}|X\rangle\langle X| J^{\nu}|P\rangle \\
& =\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}\right) W_{1}+\left(P^{\mu}-\frac{P \cdot q}{q^{2}} q^{\mu}\right)\left(P^{\nu}-\frac{P \cdot q}{q^{2}} q^{\nu}\right) W_{2}
\end{aligned}
$$

where $J^{\mu}=\sum_{f} Q_{f} \bar{q}_{f} \gamma^{\mu} q_{f}$ is the electromagnetic current.If $\nu=P \cdot q, x=-q^{2} / 2 \nu$ and for $W_{1}=F_{1}\left(x,-q^{2}\right), \nu W_{2}=F_{2}\left(x,-q^{2}\right)$ show that as $-q^{2} \rightarrow \infty$ with suitable assumptions,

$$
F_{1}\left(x,-q^{2}\right) \sim \frac{1}{2} \sum_{f} Q_{f}^{2}\left(q_{f}(x)+\bar{q}_{f}(x)\right), \quad F_{2}\left(x,-q^{2}\right) \sim x \sum_{f} Q_{f}^{2}\left(q_{f}(x)+\bar{q}_{f}(x)\right) .
$$

Explain briefly why we may expect

$$
\int_{0}^{1} \mathrm{~d} x\left(q_{f}(x)-\bar{q}_{f}(x)\right)=N_{f},
$$

where $N_{f}$ is the number of quarks of type $f$ in the hadron $H$.If only $u, d$ quarks are relevant, so that $\bar{q}_{f}=0$, and $F_{2}^{\text {proton }}, F_{2}^{\text {neutron }}$ are the functions for $H$ corresponding to a proton, neutron what are the values of the integrals

$$
\int_{0}^{1} \frac{\mathrm{~d} x}{x} F_{2}^{\text {proton }}\left(x,-q^{2}\right), \quad \int_{0}^{1} \frac{\mathrm{~d} x}{x} F_{2}^{\text {neutron }}\left(x,-q^{2}\right)
$$

as $-q^{2} \rightarrow \infty$.
$\left[\gamma^{\mu} \gamma^{\lambda} \gamma^{\nu}=g^{\mu \lambda} \gamma^{\nu}+g^{\nu \lambda} \gamma^{\mu}-g^{\mu \nu} \gamma^{\lambda}+i \epsilon^{\mu \nu \lambda \kappa} \gamma_{\kappa} \gamma_{5}.\right]$

4 What are the quantum numbers of the quarks and leptons for one generation in the standard model under the gauge group $S U(3)_{\text {colour }} \times S U(2)_{T} \times U(1)_{Y}$ ? Show that if $Q=T_{3}+Y$, where $\mathbf{T}$ are the generators of $S U(2)_{T}$ and $Y$ is the generator of $U(1)_{Y}$, then the eigenvalues of $Q$ give the correct charges for the quarks and leptons. Due to anomalies the following constraints must be imposed,

$$
\operatorname{tr}_{L}\left(T_{3}^{2} Y\right)-\operatorname{tr}_{R}\left(T_{3}^{2} Y\right)=0, \quad \operatorname{tr}_{L}\left(Y^{3}\right)-\operatorname{tr}_{R}\left(Y^{3}\right)=0
$$

where $\operatorname{tr}_{L}, \operatorname{tr}_{R}$ denote the traces for the generators acting on left handed, right handed fermion fields respectively. Show that, for the usual representations of $S U(2)_{T} \times U(1)_{Y}$, $\operatorname{tr}_{R}\left(T_{3}^{2} Y\right)=0$ and also that $\operatorname{tr}_{L}\left(T_{3}^{2} Y\right)=\frac{1}{4} \operatorname{tr}_{L}(Y)=\frac{1}{4} \operatorname{tr}_{L}(Q)$. Hence verify that the first condition is satisfied for each generation independently. Show further that the second condition holds.

5 Show how QCD for $m_{u}=m_{d}=0$ has a chiral $S U(2) \times S U(2)$ symmetry where if $q=\binom{u}{d}$ then $q_{R} \rightarrow A q_{R}, q_{L} \rightarrow B q_{L}$ for $A, B \in S U(2)$. Let $V_{i j}=\overline{q_{L j}} q_{R i}$. How does this transform? If

$$
\langle 0| V_{i j}|0\rangle=-v \delta_{i j}, \quad v \text { real, } v>0,
$$

what is the symmetry reduced to? Describe in outline how this leads to massless pions. Assume that at low energies the pion fields $\boldsymbol{\pi}=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$ determine a matrix $U(\boldsymbol{\pi})=\exp (i \boldsymbol{\pi} \cdot \boldsymbol{\tau} / F) \in S U(2)$ which transforms under a chiral transformation as $U(\boldsymbol{\pi}) \rightarrow A U(\boldsymbol{\pi}) B^{-1}$. Show that, for up to two derivatives, there is then a unique Lagrangian for massless pions, invariant under chiral $S U(2) \times S U(2)$ symmetry, of the form

$$
\mathcal{L}_{\pi}=\frac{1}{4} F^{2} \operatorname{tr}\left(\partial^{\mu} U(\boldsymbol{\pi})^{\dagger} \partial_{\mu} U(\boldsymbol{\pi})\right)=\frac{1}{2} \partial^{\mu} \boldsymbol{\pi} \cdot \partial_{\mu} \boldsymbol{\pi}+\ldots
$$

In QCD show that a mass term for the $u, d$ quarks may be introduced by

$$
\mathcal{L}_{m}=-\operatorname{tr}\left(\mathcal{M}\left(V+V^{\dagger}\right)\right), \quad \mathcal{M}=\left(\begin{array}{cc}
m_{u} & 0 \\
0 & m_{d}
\end{array}\right), \quad m_{u}, m_{d}>0
$$

An equivalent Lagrangian $\mathcal{L}_{\pi, m}$ for the pion fields may be constructed by letting $V \rightarrow$ $-v U(\boldsymbol{\pi})$. By expanding $\mathcal{L}_{\pi, m}$ to second order determine the expected mass for the pions.

