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FLUID MECHANICS OF SWIMMING ORGANISMS

Attempt TWO questions.

There are three questions in total.

The questions carry equal weight.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1 A slender fish of length L swims at constant speed U in the negative x direction by
means of small-amplitude undulations. The lateral displacement of the fish’s centre plane
is h(x, t) and the added mass per unit length of the fish is m(x), while its body mass per
unit length is mb(x).

(i) Explaining the assumptions and approximations of Lighthill’s elongated body
theory, use it to show that the lateral force on the fish, per unit length, is

Fy = D(mDh)

where
D ≡ ∂

∂t
+ U

∂

∂x
.

(ii) Modelling the fish body as an “active bending beam”, and considering conser-
vation of linear and angular momentum for a general transverse slice of the fish, show that
the bending moment distribution, G(x, t), approximately satisfies the equation

∂2G

∂x2
= mb

∂2h

∂t2
− Fy.

(iii) Explain why the solution to this equation should satisfy all four boundary
conditions

G(0) = G(L) = Gx(0) = Gx(L) = 0,

but that putting in a plausible-looking form for h(x, t) (e.g. based on observation) does not
permit all four boundary conditions to be satisfied. Explain how this apparent paradox is
resolved by the recoil correction.
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2 A spermatozoon propels itself at speed U in the −i-direction (i is a unit vector)
by passing a wave along a single flagellum of length L. State the assumptions of resistive
force theory, and show that the thrust, T , exerted by the flagellum on the viscous fluid in
which it swims, is given by

−T = (κT − κN )
∫ L

0

(w · t)(t · i)ds + κN

∫ L

0

(w · i)ds,

where κT and κN are the tangential and normal resistance coefficients, t is the tangential
unit vector, and −w is the velocity of the element ds of the flagellum relative to the fluid
far away.

In the case of a plane wave of uniform amplitude, travelling at speed c along the
flagellum and at speed V , relative to the flagellum, in the i-direction, show that

w = (U − V )i + ct.

Hence show that
T = (V − U) [(κT − κN ) βL + κNL]− κT V L,

where

β =
1
L

∫ L

0

(
∂X

∂s

)2

ds

and X(s, t) is the Lagrangian co-ordinate in the i-direction of a point on the flagellum.

Calculate the swimming speed U when the sperm head experiences a drag force
δκNLU .

Show that the total rate of working by the flagellum is given by E, where

E

κNLU2
=

(
V

U
− 1

)2

(βγ + 1− β)− 2γ
V

U

(
V

U
− 1

)
+

γV 2

α2U2
+ δ

in which
γ =

κT

κN
and α =

V

c
.

Assuming that α2 = β, deduce that the energy expenditure for given speed U is minimised
if

β2 =
−γ(δ + 1)2 +

√
γ2(δ + 1)4 + γ(1− γ)(δ + 1)2(δ2 + γ)

(δ2 + γ)(1− γ)
.
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3 (i) Certain phototactic micro-organisms respond to light as if they experience a
light-torque

GL = p ∧ L,

where p is the unit vector in the direction of a cell’s swimming and L is the light intensity
vector which is directed towards the light source. The cells are spherical and in an ambient
flow with vorticity ω a cell experiences a viscous torque

GV = α

(
1
2
ω −Ω

)
where Ω is the cell’s angular velocity and α is a constant. Show that, in the absence
of random swimming, a balance of torques gives the following expression for the rate of
change of p:

ṗ =
1
2
ω ∧ p +

L
α
· [I− pp], (1)

where I is the identity tensor.

When there is random swimming, the probability density function for swimming
direction, f(p), satisfies a Fokker-Planck equation. For the case in which L = Lex and
ω = ωey (where ex, ey are unit vectors in the direction of Cartesian x and y axes), this
equation reduces to

∇2f ≡ 1
sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1
sin2 θ

∂2f

∂φ2

=− λ

(
sin θ

∂f

∂θ
+ 2 cos θf

)
− ε

(
sinφ

∂f

∂θ
+ cot θ cos φ

∂f

∂φ

)
,

where
λ =

L

αDr
, ε =

ω

2Dr

and θ, φ are spherical coordinates with θ = 0 along the ex axis and θ = π/2, φ = 0 along
the ey axis.

For small ε, show that

f = ηeλ cos θ + εf (1)(θ, φ) + O
(
ε2

)
,

where
η =

λ

4π sinhλ
and f (1) = η sinφg(θ)

for some function g(θ) [do not attempt to calculate g(θ)].

Defining the average of a quantity q as

< q >≡
∫ 2π

0

∫ π

0

qf(θ, φ) sin θdθdφ,

show that
< p >= K0ex + εK1ez + O

(
ε2

)
,

for constants K0, K1 that depend on λ [no need to evaluate them explicitly].
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(ii) A dilute suspension of these micro-organisms occupies a long vertical channel
−a < x < a, closed at the ends z = ±L, where L/a � 1; the z-axis is vertically upwards.
The average cell concentration is n0 cells per unit volume; the cells are slightly denser than
the water in which they are suspended. The light-intensity vector is directed horizontally
in the +x direction. The cell conservation equation, mass conservation and momentum
equations for the suspension are

∂n

∂t
= −∇ · [n (u + Vs < p >)−D · ∇n]

∇ · u = 0, ρ

[
∂u
∂t

+ (u · ∇)u
]

= −∇pe − g′nez + µ∇2u

where Vs is the cell swimming speed, assumed constant. Explain all the terms in these
equations and any approximations that have been made in their derivation.

Assuming that the fluid velocity vector u = (0, 0, w) is directed entirely vertically,
except in small regions near z = ±L which can be neglected, show that a solution of the
equations and relevant boundary conditions exists in which both n and w are functions of
x alone. You may assume that D = DI and that ε remains small. Find this solution in
the form

n = n1e
βx

w =
g′n1

µβ2
eβx +

G

2µ
x2 + Ax + B,

where the constants β, n, G, A, B should be determined. Explain the physical meaning
of G. Sketch the velocity profile w(x) in the case in which βa � 1.
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