

MATHEMATICAL TRIPOS Part III

Friday 3 June, 2005 9 to 12

PAPER 50

SYMMETRY AND PARTICLE PHYSICS

Attempt **THREE** questions. There are **FOUR** questions in total. The questions are of equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

 $\mathbf{2}$

1 Isospin generators \hat{I}_i , i = 1, 2, 3, satisfy $[\hat{I}_i, \hat{I}_j] = i\epsilon_{ijk}\hat{I}_k$. Using $\hat{I}_{\pm} = \hat{I}_1 \pm i\hat{I}_2$, show how isospin multiplets may be constructed from a state $|II\rangle$ satisfying $\hat{I}_+|II\rangle = 0$, $\hat{I}_3|II\rangle = I|II\rangle$. Explain why we must have $\hat{I}_-^{2I+1}|II\rangle = 0$. If $|IM\rangle$ is a normalised state for which \hat{I}_3 has the eigenvalue M show that we may define $|IM-1\rangle$ by

$$\hat{I}_{-}|I\,M\rangle = \sqrt{(I+M)(I-M+1)}|I\,M{-}1\rangle\,,$$

where

$$\hat{I}_+|IM-1\rangle = \sqrt{(I+M)(I-M+1)}|IM\rangle$$

Calculate $e^{-i\pi \hat{I}_2} \hat{I}_i e^{i\pi \hat{I}_2}$ for i = 1, 2, 3. Explain why $e^{-i\pi \hat{I}_2} |I M\rangle = \alpha_M |I - M\rangle$ where α_M satisfies $\alpha_{M+1} = -\alpha_M$. Assuming the identity

$$e^{-i\theta \hat{I}_2} |II\rangle = (\cos \frac{1}{2}\theta)^{2I} e^{\tan \frac{1}{2}\theta \hat{I}_-} |II\rangle,$$

show that we must have $\alpha_I = 1$. Hence determine α_M for any M.

The charge conjugation operator \hat{C} satisfies

$$\hat{C}\hat{I}_3\hat{C}^{-1} = -\hat{I}_3, \qquad \hat{C}\hat{I}_1\hat{C}^{-1} = -\hat{I}_1, \qquad \hat{C}\hat{I}_2\hat{C}^{-1} = \hat{I}_2.$$

Show that $\hat{C}\hat{I}_i\hat{C}^{-1}$ obeys the SU(2) Lie algebra and that $\hat{G} = \hat{C}e^{-i\pi\hat{I}_2}$ commutes with \hat{I}_i . Assuming for integer I

$$\hat{C}|I\,0\rangle = \eta|I\,0\rangle\,,$$

determine the eigenvalue of \hat{G} for any state $|IM\rangle$.

Given that $\pi^0 \to \gamma\gamma$, what is η_{π^0} ? Show that for any pion state $\hat{G}|\pi^{\pm,0}\rangle = -|\pi^{\pm,0}\rangle$. The $\rho^{\pm,0}$ and ω are spin one mesons with isospin 1 and 0 respectively and $\eta_{\rho^0} = \eta_{\omega} = -1$. Explain why we may have the decays under strong interactions $\rho \to \pi\pi$, $\omega \to \pi\pi\pi$ but $\rho \not\to \pi\pi\pi$, $\omega \not\to \pi\pi\pi$.

 $\left[You may use \left[\hat{I}_i, \hat{I}_j \hat{I}_j \right] = 0 \text{ and } \hat{I}_j \hat{I}_j = \hat{I}_- \hat{I}_+ + \hat{I}_3^2 + \hat{I}_3 = \hat{I}_+ \hat{I}_- + \hat{I}_3^2 - \hat{I}_3. \right]$

Paper 50

3

2 Assuming low mass mesons and baryons have the quark structure $q\bar{q}$ and qqq respectively, where q = (u, d, s) are the three lightest quarks, explain why we may expect the mesons and baryons to belong to representations of SU(3) if the u, d, s masses are nearly equal. What specific SU(3) representations may occur? If I_i are the generators of isospin and the electric charge $Q = I_3 + Y$, plot the baryon states for each possible representation on a diagram with axes I_3, Y .

What is the completely symmetric qqq SU(3) representation? Assuming baryons belonging to this representation have spin $\frac{3}{2}$, why does this suggest that quarks have an additional colour label taking 3 values? Why do we expect that there are no SU(3) singlet baryons at low energies although there are SU(3) singlet mesons?

Explain why a resonance is observed at low energies in $\pi^+ p$ scattering but not in $K^+ p$ scattering?

3 For a Lie algebra \mathcal{L} with a commutator [X, Y], where [X, [Y, Z]] satisfies the Jacobi identity, define the adjoint representation. Assuming $\{T_a\}$ are a basis and that $[T_a, T_b] = c^c_{ab}T_c$ show how matrices T_a^{ad} in the adjoint representation satisfying the Lie algebra may be found.

What is meant by the terms simple and semi-simple for Lie algebras? Assuming $\kappa_{ab} = \operatorname{tr}(T_a^{ad}T_b^{ad})$ has det $\kappa_{ab} \neq 0$ describe briefly how a semi-simple Lie algebra may be reduced to simple Lie algebras.

For a simple Lie algebra with $\kappa_{ab} = \lambda \delta_{ab}$ show that $[T_a, T_b] = c_{abc}T_c$ with c_{abc} completely antisymmetric.

Let $A_{\mu a}$ be a gauge field and ϕ a field belonging to a representation space for \mathcal{L} , on which the generators are t_a . Show that the covariant derivative

$$D_{\mu}\phi = \partial_{\mu}\phi + A_{\mu a}t_{a}\phi$$

satisfies $\delta D_{\mu}\phi = \lambda_a t_a D_{\mu}\phi$ with $\delta\phi = \lambda_a t_a\phi$ and with a suitable $\delta A_{\mu a}$, to be specified, for arbitrary infinitesimal $\lambda_a(x)$. Calculate $[D_{\mu}, D_{\nu}]\phi = F_{\mu\nu a}t_a\phi$ and hence show that, for the $\delta A_{\mu a}$ just obtained, $\delta F_{\mu\nu a} = c_{abc}\lambda_b F_{\mu\nu c}$. Show that $-\frac{1}{4}F^{\mu\nu}{}_aF_{\mu\nu a}$ is invariant.

Paper 50

[TURN OVER

4 For a Lie algebra \mathcal{L} describe briefly how a basis $H_i, E_{\pm \alpha}$ may be introduced, where $i = 1, \ldots, r$ and $\{\pm \alpha\}$ are the roots. Show that if $[E_{\alpha}, E_{\beta}]$ is non zero then $\alpha + \beta$ is a root. What are simple roots $\alpha_i, i = 1, \ldots, r$? How is a general root constructed in terms of simple roots? What are positive and negative roots?

For each simple root, let $E_i^{\pm} = E_{\pm \alpha_i}$ and assume $[E_i^+, E_i^-] = \hat{H}_i$ where $[\hat{H}_i, E_i^{\pm}] = \pm 2E_i^{\pm}$. Explain why

$$[E_i^{-}, E_j^{+}] = 0, \quad j \neq i.$$

Assuming standard results for SU(2) show that if $\hat{H}_i |\psi\rangle = -\lambda |\psi\rangle$, $E_i^- |\psi\rangle = 0$ then it is necessary to have $\lambda = 0, 1, 2, ...,$ and $(E_i^+)^{\lambda+1} |\psi\rangle = 0$. Hence explain why we must have, for $j \neq i$,

$$[\hat{H}_i, E_j^+] = -n_{ij}E_j^+, \quad [\underbrace{E_i^+, [\dots [E_i^+, E_j^+] \dots]]}_{n_{ij}+1} = 0,$$

for some $n_{ij} = 0, 1, 2, ...$

Given a highest weight state $|\mathbf{w}\rangle$ satisfying $\hat{H}_i|\mathbf{w}\rangle = w_i|\mathbf{w}\rangle$, $E_i^+|\mathbf{w}\rangle = 0$ for $w_i = 0, 1, 2...$, and where $(E_i^-)^{w_i+1}|\mathbf{w}\rangle = 0$, describe in outline how a basis for a representation may be constructed from the action of E_{α} on $|\mathbf{w}\rangle$ for all negative roots α .

The Lie algebra for the group SU(3) has r = 2 and

$$[\hat{H}_i, E_j^{\pm}] = \pm K_{ji} E_j^{\pm}, \qquad (K_{ij}) = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}.$$

Let $E_3^{\pm} = \pm [E_1^{\pm}, E_2^{\pm}]$. Why must $[E_3^+, E_1^+] = [E_3^+, E_2^+] = 0$? Show that $[E_3^-, E_1^+] = E_2^-$ and $[\hat{H}_1, E_3^{\pm}] = \pm E_3^{\pm}$. Let

$$C = \hat{H}_1^2 + \hat{H}_2^2 + \hat{H}_1\hat{H}_2 + 3(\hat{H}_1 + \hat{H}_2) + 3\sum_{n=1}^3 E_n^- E_n^+.$$

Show that $[C, E_1^+] = [C, \hat{H}_1] = 0$. What is the eigenvalue of C acting on a highest weight state $|w_1, w_2\rangle$?

END OF PAPER

Paper 50