

MATHEMATICAL TRIPOS Part III

Monday 31 May, 2004 1.30 to 4.30

PAPER 45

SYMMETRY AND PARTICLE PHYSICS

Attempt **THREE** questions.

There are **four** questions in total. The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1 Define the Clebsch Gordan coefficients $\langle j_1 m_1 j_2 m_2 | JM \rangle$. Explain why we expect, for fixed M,

$$\sum_{m_1,m_2} \langle j_1 m_1 \, j_2 m_2 | JM \rangle^2 = 1 \, .$$

Particles belonging to an isospin multiplet with isospin I decay under strong interactions to two particles with isospins I_1 and I_2 . Denoting the particles by (IM), where I, M are their isospin quantum numbers, explain why the amplitude for the decay should have the form

$$A_{(IM)\to(I_1M_1)+(I_2M_2)} = a \langle I_1M_1 I_2M_2 | IM \rangle,$$

where a is independent of M_1, M_2, M .

Show that the total decay rate $\Gamma_{(IM) \to \text{anything}} = |a|^2$.

Consider the decay of the Δ baryons to a proton p or neutron n and a pion π . Using standard assignments of isospins work out

$$\frac{\Gamma_{\Delta^+ \to p+\pi^0}}{\Gamma_{\Delta^{++} \to p+\pi^+}}, \qquad \qquad \frac{\Gamma_{\Delta^+ \to n+\pi^+}}{\Gamma_{\Delta^{++} \to p+\pi^+}}.$$

How might Δ^- decay?

[Note that $I_{-}|IM\rangle = \sqrt{(I+M)(I-M+1)}|IM-1\rangle$.]

2 The quarks $q^{\alpha} = (u, d, s)$, for $\alpha = 1, 2, 3$, transform under the 3 dimensional representation of SU(3). Describe briefly how the conjugate $\bar{q}_{\alpha} = (\bar{u}, \bar{d}, \bar{s})$ transforms under the conjugate 3^* representation.

Show how we may decompose the tensor products of representations such that

 $3 \times 3 = 3^* + 6$, $3 \times 3 \times 3 = 1 + 8 + 8 + 10$, $3^* \times 3^* \times 3 = 3^* + 3^* + 6 + 15$,

where representations are labelled by their dimensions and 15 denotes the representation formed by tensors $T^{\alpha}_{\beta\gamma}$ satisfying $T^{\alpha}_{\beta\gamma} = T^{\alpha}_{\gamma\beta}$, $T^{\alpha}_{\beta\alpha} = 0$. How does $3^* \times 3^* \times 3^*$ decompose?

A possible baryon has strangeness S = 1 and isospin I = 0. Show how this might be interpretated as belonging to a 10^{*} representation with quark structure $(ud)(ud)\bar{s}$ where (ud) denotes u, d quarks combined so that they belong to a 3^{*} representation. Why can this baryon not belong to an 8 representation?

 $Paper \ 45$

3 Show that the parity of a meson formed from a quark and antiquark is $(-1)^{L+1}$, where L is their relative orbital angular momentum in the centre of mass frame.

Show that the charge conjugation of a neutral meson is $(-1)^{L+S}$ where S is the total spin of the quark, antiquark.

Restricting to the u, d quarks and their antiquarks show that we may expect amongst low mass mesons the spinless pions π^{\pm}, π^{0} and also spin 1 mesons ρ^{\pm}, ρ^{0} , with isosopin 1, and ω with isospin 0. What are their C, P quantum numbers? Why can $\rho^{0} \rightarrow \pi^{+}\pi^{-}$ but $\omega \not\rightarrow \pi^{+}\pi^{-}$ although $\omega \rightarrow \pi^{+}\pi^{-}\pi^{0}$?

[You may assume that the parity of an antiquark is opposite to that of the corresponding quark and that charge conjugation interchanges quarks and antiquarks.]

4 What is the rank of a Lie algebra? Describe briefly how for a Lie algebra \mathcal{L} the roots α may be defined.

Let H, E^{\pm} be elements of \mathcal{L} satisfying

$$[H, E^{\pm}] = \pm 2E^{\pm}, \qquad [E^+, E^-] = H,$$

and let $\{X_0, X_1, \ldots\} \in \mathcal{L}$ be such that

$$[E^-, X_0] = 0, \qquad [H, X_0] = -\lambda X_0, \qquad [E^+, X_n] = X_{n+1}.$$

What is $[H, X_n]$? Assume

$$[E^-, X_n] = q_n X_{n-1} \,.$$

By considering the commutator of this equation with E^+ and using the Jacobi identity show that $q_{n+1} = q_n + \lambda - 2n$ and hence that

$$q_n = n(\lambda - n + 1).$$

Suppose that $[E^+, X_{n_0}] = 0$ for some n_0 . Show that we must then have $\lambda = n_0$.

Let $H_i, E_i^{\pm} \in \mathcal{L}$ for i = 1, 2, where

 $[H_i, H_j] = 0, \quad [E_i^+, E_j^-] = \delta_{ij}H_j, \quad [H_i, E_j^{\pm}] = \pm K_{ji}E_j^{\pm}], \quad K_{jj} = 2, \text{ no sum on } j.$

Explain why

$$[\underbrace{E_1^{\pm}, [\dots [E_1^{\pm}]_{n}, E_2^{\pm}]_{\dots}]] \neq 0, \quad [\underbrace{E_1^{\pm}, [\dots [E_1^{\pm}]_{n+1}, E_2^{\pm}]_{\dots}]] = 0 \quad \Rightarrow \quad K_{21} = -n.$$

If $\boldsymbol{\alpha}, \boldsymbol{\beta}$ are roots why must $2\boldsymbol{\alpha} \cdot \boldsymbol{\beta}/\boldsymbol{\beta}^2$ be an integer?

 $R^{r}_{s}, \sum_{r} R^{r}_{r} = 0, r, s = 1, 2, 3$ are elements of a Lie algebra such that

$$[R^r{}_s, R^u{}_v] = \delta^u{}_s R^r{}_v - \delta^r{}_v R^u{}_s.$$

Show that we may take $E_1^+ = R_{2}^1$, $E_2^+ = R_{3}^2$ and $E_1^- = R_{1}^2$, $E_2^- = R_{2}^3$. What are H_1, H_2 ? Determine K_{ji} in this case.

Paper 45