PAPER 45

SYMMETRY AND PARTICLE PHYSICS

Attempt THREE questions

There are four questions in total.
The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Define the Clebsch Gordan coefficients $\left\langle j_{1} m_{1} j_{2} m_{2} \mid J M\right\rangle$. Explain why we expect, for fixed M,

$$
\sum_{m_{1}, m_{2}}\left\langle j_{1} m_{1} j_{2} m_{2} \mid J M\right\rangle^{2}=1 .
$$

Particles belonging to an isospin multiplet with isospin I decay under strong interactions to two particles with isospins I_{1} and I_{2}. Denoting the particles by (IM), where I, M are their isospin quantum numbers, explain why the amplitude for the decay should have the form

$$
A_{(I M) \rightarrow\left(I_{1} M_{1}\right)+\left(I_{2} M_{2}\right)}=a\left\langle I_{1} M_{1} I_{2} M_{2} \mid I M\right\rangle,
$$

where a is independent of M_{1}, M_{2}, M.
Show that the total decay rate $\Gamma_{(I M) \rightarrow \text { anything }}=|a|^{2}$.
Consider the decay of the Δ baryons to a proton p or neutron n and a pion π. Using standard assignments of isospins work out

$$
\frac{\Gamma_{\Delta^{+} \rightarrow p+\pi^{0}}}{\Gamma_{\Delta^{++} \rightarrow p+\pi^{+}}}, \quad \frac{\Gamma_{\Delta^{+} \rightarrow n+\pi^{+}}}{\Gamma_{\Delta^{++} \rightarrow p+\pi^{+}}} .
$$

How might Δ^{-}decay?
$\left[\right.$ Note that $\left.I_{-}|I M\rangle=\sqrt{(I+M)(I-M+1)}|I M-1\rangle.\right]$

2 The quarks $q^{\alpha}=(u, d, s)$, for $\alpha=1,2,3$, transform under the 3 dimensional representation of $S U(3)$. Describe briefly how the conjugate $\bar{q}_{\alpha}=(\bar{u}, \bar{d}, \bar{s})$ transforms under the conjugate 3^{*} representation.

Show how we may decompose the tensor products of representations such that

$$
3 \times 3=3^{*}+6, \quad 3 \times 3 \times 3=1+8+8+10, \quad 3^{*} \times 3^{*} \times 3=3^{*}+3^{*}+6+15
$$

where representations are labelled by their dimensions and 15 denotes the representation formed by tensors $T_{\beta \gamma}^{\alpha}$ satisfying $T_{\beta \gamma}^{\alpha}=T_{\gamma \beta}^{\alpha}, T_{\beta \alpha}^{\alpha}=0$. How does $3^{*} \times 3^{*} \times 3^{*}$ decompose?

A possible baryon has strangeness $S=1$ and isospin $I=0$. Show how this might be interpretated as belonging to a 10^{*} representation with quark structure $(u d)(u d) \bar{s}$ where $(u d)$ denotes u, d quarks combined so that they belong to a 3^{*} representation. Why can this baryon not belong to an 8 representation?

3 Show that the parity of a meson formed from a quark and antiquark is $(-1)^{L+1}$, where L is their relative orbital angular momentum in the centre of mass frame.

Show that the charge conjugation of a neutral meson is $(-1)^{L+S}$ where S is the total spin of the quark, antiquark.

Restricting to the u, d quarks and their antiquarks show that we may expect amongst low mass mesons the spinless pions $\pi^{ \pm}, \pi^{0}$ and also spin 1 mesons $\rho^{ \pm}, \rho^{0}$, with isosopin 1, and ω with isospin 0 . What are their C, P quantum numbers? Why can $\rho^{0} \rightarrow \pi^{+} \pi^{-}$but $\omega \nrightarrow \pi^{+} \pi^{-}$although $\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}$?
[You may assume that the parity of an antiquark is opposite to that of the corresponding quark and that charge conjugation interchanges quarks and antiquarks.]
$4 \quad$ What is the rank of a Lie algebra? Describe briefly how for a Lie algebra \mathcal{L} the roots $\boldsymbol{\alpha}$ may be defined.

Let $H, E^{ \pm}$be elements of \mathcal{L} satisfying

$$
\left[H, E^{ \pm}\right]= \pm 2 E^{ \pm}, \quad\left[E^{+}, E^{-}\right]=H
$$

and let $\left\{X_{0}, X_{1}, \ldots\right\} \in \mathcal{L}$ be such that

$$
\left[E^{-}, X_{0}\right]=0, \quad\left[H, X_{0}\right]=-\lambda X_{0}, \quad\left[E^{+}, X_{n}\right]=X_{n+1}
$$

What is $\left[H, X_{n}\right]$? Assume

$$
\left[E^{-}, X_{n}\right]=q_{n} X_{n-1}
$$

By considering the commutator of this equation with E^{+}and using the Jacobi identity show that $q_{n+1}=q_{n}+\lambda-2 n$ and hence that

$$
q_{n}=n(\lambda-n+1) .
$$

Suppose that $\left[E^{+}, X_{n_{0}}\right]=0$ for some n_{0}. Show that we must then have $\lambda=n_{0}$.
Let $H_{i}, E_{i}^{ \pm} \in \mathcal{L}$ for $i=1,2$, where

$$
\left.\left[H_{i}, H_{j}\right]=0, \quad\left[E_{i}^{+}, E_{j}^{-}\right]=\delta_{i j} H_{j}, \quad\left[H_{i}, E_{j}^{ \pm}\right]= \pm K_{j i} E_{j}^{ \pm}\right], \quad K_{j j}=2, \quad \text { no sum on } j
$$

Explain why

$$
[\underbrace{E_{1}^{ \pm},\left[\ldots \left[E_{1}^{ \pm}\right.\right.}_{n}, E_{2}^{ \pm}] \ldots]] \neq 0, \quad[\underbrace{E_{1}^{ \pm},\left[\ldots \left[E_{1}^{ \pm}\right.\right.}_{n+1}, E_{2}^{ \pm}] \ldots]]=0 \quad \Rightarrow \quad K_{21}=-n .
$$

If $\boldsymbol{\alpha}, \boldsymbol{\beta}$ are roots why must $2 \boldsymbol{\alpha} \cdot \boldsymbol{\beta} / \boldsymbol{\beta}^{2}$ be an integer?
$R^{r}{ }_{s}, \sum_{r} R_{r}^{r}=0, r, s=1,2,3$ are elements of a Lie algebra such that

$$
\left[R_{s}^{r}, R_{v}^{u}\right]=\delta_{s}^{u} R_{v}^{r}-\delta_{v}^{r} R_{s}^{u} .
$$

Show that we may take $E_{1}{ }^{+}=R^{1}{ }_{2}, E_{2}{ }^{+}=R^{2}{ }_{3}$ and $E_{1}{ }^{-}=R^{2}{ }_{1}, E_{2}{ }^{-}=R^{3}{ }_{2}$. What are H_{1}, H_{2} ? Determine $K_{j i}$ in this case.

