
MATHEMATICAL TRIPOS Part III

Thursday 1 June, 2006 1.30 to 4.30

PAPER 71

STRUCTURE AND EVOLUTION OF STARS

Attempt THREE questions.
There are FOUR questions in total.

The questions carry equal weight.

The symbols used in these questions have the meanings they were given in the lectures.
Candidates are reminded of the equations of stellar structure in the form:

dP

dr
= −Gmρ

r2

dm

dr
= 4πr2ρ

dT

dr
= − 3κρLr

16πacr2T 3

dLr

dr
= 4πr2ρε

P =
RρT

µ
+

aT 4

3
with 1/µ = 2X + 3Y/4 + Z/2
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1 A cluster of massive stars is contracting towards the main sequence with the only
energy source being due to gravitational contraction. The stellar material is an ideal gas
with γ = 5/3 with radiation pressure being negligible, energy transport is by radiation
and the opacity κ = κ0, where κ0 is constant.

Show that during this evolution the effective energy production rate per unit mass is given
by

ε = − 3
2ρ

∂P

∂t
+

5P

2ρ2

∂ρ

∂t
,

with t being the time and the derivative being taken at constant m.

A set of dimensionless variables are defined through x = r/R, q = m/M, l = Lr/L,
b = (4πρR3)/M and p = (4πR4P )/(GM2), with q, l, b, p being functions only of x. The
radius R and luminosity L are functions only of time.

Show that in terms of these variables, the equations of stellar structure for a contracting
star take the form

dp

dx
= − bq

x2
,

dq

dx
= x2b,

d

dx

(p

b

)
= −D

b4l

x2p3
,

dl

dx
= Ex2p,

where

D =
3κ0R4L

64π2acµ4G4M3
and

E = −3GM2

2R2L

(
dR

dt

)
.

Hence deduce that the luminosity is∝M3 and constant during the evolution of a particular
star. If the evolution commences at t = 0 with very large radius, show that the radius is
subsequently given by

RLt

GM2
= constant.

The stars eventually reach the main sequence where the energy generation is by the CNO
cycle with ε = ε0ρT 16. Show that they then obey the mass-radius relation

R ∝M15/19.

Show further that the mass of the stars in the cluster that are just reaching the main
sequence at time t satisfies a relation of the form

M ∝ t−19/34.
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2 Derive Schwarzschild’s condition for stability to convection of a stellar radiative
region consisting of an ideal gas with ratio of specific heats γ = 5/3 in the form

dP

dr
>

5P

3ρ

dρ

dr
.

Show that this can be written alternatively as

3κLrP

16πacGmT 4
<

2
5
.

The temperature in the atmosphere of a cool star is given as a function of the optical
depth τ by

T 4 = T 4
e

(
1
2

+
3
4
τ

)
and the opacity is given by κ = κ0ρT 13, where κ0 is constant.

Show that in the upper radiative layers

P 2 =
4πcGMaR
3κ0LµT 8

e

(
4− T 8

e /T 8
)

and deduce that convetion sets in when T = (13/20)1/8Te.

In the lower convective region, the structure is polytropic with P = KT 5/2. Show that if
the star is fully convective, there is a relation between the mass, radius and luminosity of
the form

L ∝M8/17R38/17.
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3 (a) Show that the electron pressure in a helium gas in which the electrons are
completely degenerate but nonrelativistic is given by

P = Kρ5/3,

where

K =
(

3
2π

)2/3
h2

40mem
5/3
p

,

with h, me, and mp being Planck’s constant, the mass of the electron and the mass of a
proton respectively.

Deduce that non relativistic helium white dwarfs obey the mass radius relation
R = AM−1/3, where A is a constant.

(You may assume that for complete degeneracy, the number density of electrons, n(p),
with total momentum less than p, is given by dn(p)/dp = 8πp2/h3, p < p0 and dn(p)/dp =
0, p > p0, where po is the Fermi momentum.)

(b) The core of a red giant has mass Mc and is in a regime in which the radius Rc

does not vary with Mc.

Above the core is a hydrogen rich radiative envelope which is assumed to have negligible
mass. The base of the envelope, at the core surface, coincides with the base of a thin
hydrogen burning shell in which the luminosity L is generated. The opacity is given by
κ = κ0ρ/T 7/2 and radiation pressure is neglected.

Assuming the envelope extends to small values of P and T, show that in the regions above
the shell

P = CT 17/4,

where

C =
(

64πacGMcR
51κ0Lµ

)1/2

.

Show further that T as a function of r is given by

T =
4µGMc

17Rr
.

The energy generation rate in the hydrogen rich layers is given by ε = ε0ρT 67/4. Confirm
that the hydrogen burning shell is thin by showing that

ε(1.05Rc)/ε(Rc) ∼ 1/e

and deduce that the luminosity-core mass relation is

L ∝M97/8
c .

State very briefly what conditions Mc and Rc should satisfy so that this model is consistent.
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4 A binary system with components of mass M1 and M2 is in circular orbit about
the centre of mass with period Porb = 2π/Ω. Their distances from the centre of mass are
a1 and a2 and their angular momenta about the centre of mass are J1 and J2 respectively.
The separation a = a1 + a2, and the total orbital angular momentum J = J1 + J2.

Show that

J =
(

M1M2

M1 + M2

)
a2Ω =

G2/3P
1/3
orb M1M2

(2π)1/3(M1 + M2)1/3
.

The star of mass M1 is transferring mass to M2 and simultaneously losing mass to infinity
through a stellar wind. The mass transfer rate is Ṁ2 = −fṀ1 and the mass loss rate due
to the wind is (1− f)Ṁ1. The wind carries away a specific angular momentum J1/M1.

By considering the conservation of angular momentum or otherwise, deduce that

Porb ∝M−3f
1 M−3

2 (M1 + M2)−2.

The Roche lobe of M1 is given by the relation

RL = 0.46a

(
M1

(M1 + M2)

)1/3

.

Show that

1
RL

dRL

dt
=

Ṁ1

M1

(
f

(
2q +

4q

3(1 + q)
− 2

)
+

1
3
− 4q

3(1 + q)

)
,

where q = M1/M2.

The radius R1 of M1 is such that R1 ∝M−n
1 and it is assumed to remain in contact with

the Roche lobe. Deduce that in that case f must be such that

f

(
2q +

4q

3(1 + q)
− 2

)
=

4q

3(1 + q)
− n− 1

3
.

Comment on what happens when q and n are such that the above expression returns a
result for f outside the interval (0, 1).
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