PAPER 70

STRUCTURE AND EVOLUTION OF STARS

Attempt THREE questions.
There are $\boldsymbol{F O U R}$ questions in total.
The questions carry equal weight.
The notation used is standard and you are reminded of the equations of stellar structure in the form:

$$
\begin{gathered}
\frac{d P}{d r}=-\frac{\mathrm{G} m \rho}{r^{2}} ; \\
\frac{d m}{d r}=4 \pi r^{2} \rho ; \\
\frac{d T}{d r}=-\frac{3 \kappa \rho L_{r}}{16 \pi a c r^{2} T^{3}} ; \\
\frac{d L_{r}}{d r}=4 \pi r^{2} \rho \epsilon ; \\
P=\frac{\Re \rho T}{\mu}+\frac{1}{3} a T^{4} .
\end{gathered}
$$

STATIONERY REQUIREMENTS
Cover sheet
Treasury Tag
Script paper
You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 By considering the adiabatic displacement of a packet of fluid, derive the Schwarzschild criterion for convective stability and show that, for an ideal gas with ratio of specific heats $\gamma=5 / 3$, the fluid is unstable to convection if

$$
\nabla=\frac{d \log T}{d \log P}>\frac{2}{5}
$$

where P is the pressure and T is the temperature.
In a thin stellar atmosphere

$$
T^{4}=\frac{3}{4} T_{\mathrm{e}}^{4}\left(\tau+\frac{2}{3}\right)
$$

where T_{e} is the effective temperature and

$$
\tau=\int_{r}^{\infty} \kappa \rho d r
$$

is the optical depth and ρ is the density. The atmosphere of a cool star behaves approximately as an ideal gas with $\gamma=5 / 3$ and has opacity

$$
\kappa=\kappa_{0} P^{1 / 2} T^{8}
$$

where κ_{0} is a constant. Explain briefly what conditions lead to this dependence.
Show that

$$
P^{3 / 2}=\frac{8 G M}{\kappa_{0} R^{2} T_{\mathrm{e}}^{8}}\left\{\frac{1}{2}-\frac{1}{3 \tau+2}\right\},
$$

where M is the mass of the star and R is its radius.
Find the value of $\tau=\tau_{\mathrm{c}}$ at which convection sets in.
The star is fully convective for $\tau>\tau_{\mathrm{c}}$ so that the pressure and density are related by $P=K \rho^{5 / 3}$ with K a constant for each star. Deduce that

$$
L \propto R^{98 / 47} M^{28 / 47}
$$

[For an $n=3 / 2$ polytrope you may assume that $R \propto K M^{-1 / 3}$]

2 Estimate the mean kinetic energy $\langle E\rangle$ for a proton in the centre of the Sun and compare it with the Coulomb energy E_{C} owing to the electrostatic repulsion that must be overcome in bringing two protons together.

State briefly the two physical ideas that allow this barrier to be surmounted.
Show that in a collision between two protons, each of mass m_{p}, the kinetic energy E in the centre of mass frame is related to the relative velocity v by $E=\frac{1}{4} m_{\mathrm{p}} v^{2}$.

The cross-section for nuclear reactions between two protons can be written in the form

$$
\sigma(E)=\frac{S_{0}}{E} \exp \left\{-2 \sqrt{\frac{E_{\mathrm{B}}}{E}}\right\},
$$

where S_{0} is a constant and E_{B} is the quantum mechanical barrier energy. Explain very briefly how the terms in this expression arise.

For non-degenerate, non-relativistic gas at temperature T the relative velocity distribution is Maxwellian given by

$$
n(v) d v=4 \pi\left(\frac{m_{\mathrm{p}}}{4 \pi k T}\right)^{\frac{3}{2}} \exp \left(-\frac{E}{k T}\right) v^{2} d v
$$

The number density of reacting particles is N. Show that the reaction rate R_{pp} per unit volume per unit time is

$$
R_{\mathrm{pp}}=\frac{1}{2} N^{2} \int_{0}^{\infty} v \sigma(v) n(v) d v
$$

Deduce that

$$
R_{\mathrm{pp}}=\frac{S_{0} N^{2}}{(k T)^{3 / 2}}\left(\frac{4}{\pi m_{\mathrm{p}}}\right)^{\frac{1}{2}} \int_{0}^{\infty} \exp \left\{-\frac{E}{k T}-2 \sqrt{\frac{E_{B}}{E}}\right\} d E
$$

Find the Gamow energy E_{G} at which the integrand peaks and show that $k T \ll$ $E_{\mathrm{G}} \ll E_{\mathrm{B}}$.

Approximate the integrand by a Gaussian centred on E_{G} and deduce that the temperature dependence of the reaction rate takes approximately the form

$$
R_{\mathrm{pp}} \propto \frac{1}{T^{\alpha}} \exp \left\{-(\beta / T)^{\frac{1}{3}}\right\}
$$

where α and β are constants which you should determine.
[The temperature at the centre of the Sun $T_{\mathrm{c}}=2 \times 10^{7} K, k=1.4 \times 10^{-16} \mathrm{erg} \mathrm{K}^{-1}$, the electrostatic force between two protons is e^{2} / r^{2} where $e^{2}=2.3 \times 10^{-19}$ in cgs units and the radius of a proton $r_{\mathrm{p}}=10^{-13} \mathrm{~cm}$.]

3 Show that in a frame in which all the material is corotating with angular velocity $\boldsymbol{\Omega}$ the equation of hydrostatic equilibrium of a star can be written as

$$
\nabla P=-\rho \nabla \phi
$$

for pressure P, density ρ and combined gravitational and centrifugal potential $\phi(\boldsymbol{r})$ which satisfies

$$
\nabla^{2} \phi=4 \pi G \rho-2 \Omega^{2}
$$

Show that P and ρ must be constant on equipotential surfaces. Hence deduce that $\nabla^{2} \phi$, but not necessarily $|\nabla \phi|$, are constant on equipotential surfaces.

Argue that, for a star of uniform composition, temperature T is also constant on equipotential surfaces.

The star is in radiative equilibrium with heat flux

$$
\boldsymbol{F}=-\chi \nabla T=-\chi \frac{d T}{d \phi} \nabla \phi
$$

where χ is the conductivity which is related to the opacity $\kappa(\rho, T)$ by

$$
\chi=\frac{4 a c T^{3}}{3 \kappa \rho}
$$

a is the radiation constant and c is the speed of light. Show that the effective temperature on the surface of the star

$$
T_{\mathrm{e}} \propto g^{1 / 4}
$$

where g is the magnitude of the effective gravitational acceleration and sketch the crosssection of a rapidly rotating star and indicate where it is hottest.

Why is it not in general possible for the energy balance to be given simply by

$$
\nabla \cdot \boldsymbol{F}=\rho \epsilon,
$$

where $\epsilon(\rho, T)$ is the energy generation rate per unit mass?
Now suppose that there is a steady circulation velocity field $\boldsymbol{v}(\boldsymbol{r})$ so that the energy balance is given instead by

$$
\rho T \frac{D s}{D t}=\rho \boldsymbol{v} \cdot T \nabla s=\rho \epsilon-\nabla \cdot \boldsymbol{F}
$$

where $s(\rho, T)$ is the specific entropy. Use continuity and the thermodynamic relation

$$
T d s=d h-\frac{1}{\rho} d P
$$

where $h(\rho, T)$ is the specific enthalpy, to show that

$$
\int_{S} \boldsymbol{F} \cdot \boldsymbol{d} \boldsymbol{S}=\int_{V} \rho \epsilon d V
$$

where S is an equipotential surface enclosing volume V.
Hence show that the radiative gradient is given by

$$
\frac{d \log T}{d \log P}=\frac{3 \kappa P L}{16 \pi a c G m T^{4}}\left(1-\frac{\Omega^{2} V}{2 \pi G m}\right)^{-1}
$$

where L is the rate of energy generation within V and m is the mass in V.

4 A red giant of mass M_{1} is in a binary system with a main-sequence star of mass M_{2}. The red giant is losing mass in a fast spherically symmetric stellar wind at a rate $\dot{M}<0$. Show that, if the intrinsic angular momentum of the stars is neglected,

$$
\frac{\dot{J}_{\text {orb }}}{J_{\text {orb }}}=\frac{M_{2} \dot{M}}{M_{1} M}
$$

where $M=M_{1}+M_{2}$ and that the orbital period P and separation a obey

$$
P \propto M^{-2}, \quad a \propto M^{-1}
$$

On a short timescale the radius of the giant R_{1} responds according to

$$
R_{1} \propto M_{1}^{-n} \quad 0<n<1
$$

and the radius of its Roche lobe is approximated by

$$
\frac{R_{\mathrm{L}}}{a}=0.426\left(\frac{M_{1}}{M}\right)^{\frac{1}{3}}
$$

Now suppose that the giant is filling its Roche lobe and that wind mass loss is taking place on a timescale much shorter than the nuclear timescale. Show, by differentiating $\log \left(R_{1} / R_{\mathrm{L}}\right)$ or otherwise, that mass transfer is driven by the wind if

$$
q=\frac{M_{1}}{M_{2}}<\frac{1+3 n}{3(1-n)}
$$

What happens otherwise?
Show further that, when (\dagger) is satisfied and $6 q<5-3 n$, the rate of mass transfer to the main-sequence star

$$
\dot{M}_{2}=-\frac{1+3 n-3(1-n) q}{(1+q)(5-3 n-6 q)} \dot{M} .
$$

What is the physical consequence if $6 q>5-3 n$?

