MATHEMATICAL TRIPOS Part III

Tuesday 1 June, 2004 1.30 to 4.30

PAPER 63

STRUCTURE AND EVOLUTION OF STARS

Attempt **THREE** questions.

There are **four** questions in total. The questions carry equal weight.

The notation used is standard and you are reminded of the equations of stellar structure in the form:

$$\begin{split} \frac{dP}{dr} &= -\frac{\mathrm{G}m\rho}{r^2};\\ \frac{dm}{dr} &= 4\pi r^2\rho;\\ \frac{dT}{dr} &= -\frac{3\kappa\rho L_r}{16\pi a c r^2 T^3};\\ \frac{dL_r}{dr} &= 4\pi r^2\rho\epsilon;\\ P &= \frac{\Re\rho T}{\mu} + \frac{1}{3}aT^4. \end{split}$$

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

 $\mathbf{2}$

1 A zero-age main-sequence model of the Sun is fully radiative. Its material behaves as an ideal gas and has opacity

$$\kappa = \kappa_0 Z \rho T^{-3},$$

where κ_0 is a constant, ρ and T are its density and temperature and Z is the mass fraction of metals. The energy generation rate per unit mass is

$$\epsilon = \epsilon_0 X^2 \rho T^5,$$

where ϵ_0 is a constant and X is the mass fraction of hydrogen. Show that, for small Z, the mean molecular weight

$$\mu \approx \frac{4}{5X+3}$$

and that the luminosity L and central temperature $T_{\rm c}$ obey

$$L \propto rac{\mu^7}{Z}$$
 and $T_{
m c} \propto rac{\mu^{5/4}}{X^{1/4}Z^{1/8}}$

Two such models of the Sun have the same luminosity $L = L_{\odot}$ but differ in composition. The first has $X = X_1 = 0.7$ and $Z = Z_1 = 0.02$ while the second has $X = X_2$ and $Z = Z_2 = 0.01$. Find X_2 to one significant figure and determine which model has the higher central temperature.

The energy released in burning a unit mass of hydrogen to helium is E_0 . Assuming that the stars remain homogeneous, show that the luminosity varies with time t as

$$L(t) = L_0 \left(1 - \frac{10\mu_0 L_0 t}{E_0 M_{\odot}} \right)^{-\frac{7}{8}},$$

where L_0 and μ_0 are the luminosity and mean molecular weight at t = 0.

[You may find it useful to know that $2^{1/7} \approx 1.1$]

Paper 63

2 In a plane-parallel grey atmosphere of negligible mass and containing no sources of energy the optical depth τ is defined by $d\tau = -\kappa\rho dz$, where $\kappa(\rho, T)$ is the total opacity of stellar material of density ρ and at temperature T, z is the height in the atmosphere and $\tau \to 0$ at large z. The equation of radiative transfer can be written in the form

$$\cos\theta \frac{dI}{d\tau} = I - \frac{j}{\kappa},\tag{*}$$

where $I(\tau, \theta)$ is the intensity of radiation in at optical depth τ at an angle θ to the z-axis and j, the effective emissivity including scattering and spontaneous emission is isotropic and so given by

$$\frac{j}{\kappa} = \frac{\sigma T^4}{\pi},$$

where σ is the Stefan–Boltzmann constant. Integrate (*) over a sphere and use the fact that the flux F in the z direction is independent of τ to deduce that

$$4\pi \frac{j}{\kappa} = \int_{\text{sphere}} I(\tau, \theta) \, d\Omega = 4\pi J,$$

where $J(\tau)$ is the mean intensity.

Show that the form

$$I(\tau, \theta) = A(\tau) + C(\tau) \cos \theta$$

satisfies the Eddington closure approximation

$$cP_{\rm r}=\frac{4}{3}\pi J$$

between radiation pressure $P_{\rm r}(\tau)$, the speed of light c and the mean intensity, and is a solution to (*) if

$$\frac{dA}{d\tau} = C$$

and that

$$C = \frac{3F}{4\pi}.$$

Use the fact that there is no flux into the star at $\tau = 0$,

$$F_{\rm in} = \int_{\rm inwardhemisphere} I \cos \theta \, d\Omega = 0,$$

to find $A(\tau)$ and use the definition $F = \sigma T_{\rm e}^4$ of effective temperature $T_{\rm e}$ to deduce that

$$T^{4} = \frac{3}{4}T_{\rm e}^{4}\left(\tau + \frac{2}{3}\right),$$

and that when $\tau = 0, T = T_0 = 2^{-1/4} T_e$.

In the atmosphere of a red dwarf the opacity obeys

$$\kappa = \kappa_0 P^{\alpha - 1} T^{4 - 4\beta}$$

[TURN OVER

Paper 63

and radiation pressure is negligible. By considering hydrostatic equilibrium show that the pressure ${\cal P}$ varies with temperature as

$$P^{\alpha} = \frac{2\alpha g}{3\kappa_0 T_0^4} (T^{4\beta} - T_0^{4\beta}),$$

where g is the surface gravity of the star.

Hence deduce that an appropriate surface boundary condition, for the stellar interior, is

$$\frac{P\kappa}{g} = \frac{4\alpha}{3\beta}(1 - 2^{-\beta})$$

at the location where $L_r = 4\pi\sigma r^2 T^4$, where L_r is the luminosity at radius r from the centre of the star.

5

3 A cataclysmic variable consists of a white dwarf of mass M_1 and a low-mass mainsequence companion of mass M_2 in a circular orbit with separation a. The main-sequence star is filling its Roche lobe and transferring mass to the white dwarf at a rate $\dot{M}_1 \approx -\dot{M}_2$. The mass ratio $q = M_2/M_1 < 1$. The hydrostatic and thermal equilibrium radius of the main-sequence star can be approximated by

$$\frac{R_2}{R_{\odot}} = \frac{M_2}{M_{\odot}}$$

while for a suitable range of mass ratios the Roche-lobe radius $R_{\rm L}$ obeys

$$\frac{R_{\rm L}}{a} = 0.46 \left(\frac{M_2}{M}\right)^{\frac{1}{3}},$$

where $M = M_1 + M_2$. Show that the period P of the binary is given by

$$\frac{P}{P_0} = \frac{M_2}{M_{\odot}}$$

for some constant P_0 .

The spin angular momentum of the stars can be neglected. Show that the orbital angular momentum is

$$J = \frac{M_1 M_2}{M} a^2 \Omega,$$

where $\Omega = 2\pi/P$ is the orbital angular velocity.

Find $\dot{R}_{\rm L}/R_{\rm L}$ as a function of \dot{M}_2/M_2 when $\dot{J} = 0$ and compare this with \dot{R}_2/R_2 . What would be the equilibrium response of the system to mass transfer if q < 4/3.

Describe briefly one mechanism that can lead to angular momentum loss (J < 0)and maintain mass transfer if q < 4/3.

Once a layer of hydrogen-rich material of mass $\delta m \approx 10^{-4} M_{\odot}$ has accumulated on the surface of the white dwarf thermonuclear reactions ignite in the degenerate material. These expel the entire layer of mass δm from the system in a nova explosion lasting a few hundred orbital periods. Comment on the effect of this on eccentricity and show that the change in separation $\delta a/a = \delta m/M$ and the change in Roche-lobe radius $\delta R_{\rm L}/R_{\rm L} = 4 \, \delta m/3M$ to first order in $\delta m/M$.

Mass transfer is interrupted and the main-sequence star responds by shrinking inside its Roche lobe. Assuming that the rate of angular momentum loss $-\dot{J}$ remains constant until the next nova explosion, show, again to first order in $\delta m/M$, that the ratio of the time spent detached $t_{\rm d}$ to the time spent semi-detached $t_{\rm s}$ is

$$\frac{t_{\rm d}}{t_{\rm s}} = \frac{2q}{(4-3q)(1+q)}.$$

4 Describe the evolution of a $5 M_{\odot}$ star from the zero-age main sequence to the onset of thermal pulses. Pay particular attention to the various energy generation mechanisms and indicate timescales. Include an evolutionary track in a Hertzsprung–Russell diagram.

Without discussing the details of the thermally pulsing asymptotic branch, describe the final stages of the evolution of such a star and indicate how these might differ if the rate of mass loss were much lower than, or much higher than, expected.

Paper 63