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1 (a) Let K be a compact H-hull and set H = H \ K. Show that there exists a unique
conformal isomorphism gK : H → H such that gK(z)− z → 0 as z →∞.

(b) Suppose that K0 is a compact H-hull and gK0(z) = z+z−1 for all z ∈ H\K0. Identify
K0 and find hcap(K0).

(c) Suppose that |z| ≤ 1 for all z ∈ K. Show that, for all x ∈ R with |x| > 1,

1− x−2 ≤ g′K(x) ≤ 1.

[In (c), you may use without proof any result from the course.]

2 (a) Let (γt)t≥0 be an SLE(κ), for some κ ∈ [0,∞). Explain the relation to (γt)t≥0 of the
associated Loewner flow (gt)t≥0 and transform (ξt)t≥0.

(b) Fix s ≥ 0 and define for t ≥ 0

γ̄t = gs(γs+t), γ̃t = γ̄t − ξs.

What is the Loewner transform of (γ̄t)t≥0? What is the distribution of (γ̃t)t≥0? Justify your
answers.

(c) Suppose now that κ ∈ (0, 4]. Show that, almost surely, (γt)t≥0 is a simple curve. [You
may assume without proof that, almost surely, Im(γt) > 0 for all t > 0.]

3 (a) Let γ be an SLE(8/3). Let U be a simply connected domain in the upper half-plane
H, which is a neighbourhood of both 0 and∞. Denote by Φ the unique conformal isomorphism
U → H such that Φ(z)−z → 0 as z →∞. SetKt = {γs : 0 < s ≤ t} and T = inf{t ≥ 0 : γt /∈ U}.
Define, for t < T ,

K∗t = {Φ(γs) : 0 < s ≤ t}, Φt = gK∗
t
◦ Φ ◦ g−1

Kt
,

where, for K a compact H-hull, gK : (H \K) → H is the unique conformal isomorphism such
that gK(z)− z → 0 as z →∞. Set

Σt = Φ′t(ξt),

where ξ is the Loewner transform of γ. Show that a suitably chosen function of the process Σ
is a local martingale.

(b) Hence, show that

P(γt ∈ U for all t ≥ 0) = Φ′(0)5/8.

[You may assume without proof any standard identities of the classical Loewner theory, or for
the Brownian excursion. You may also assume that Σt → 1{T=∞} as t ↑ T , almost surely.]
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4 (a) Let µ be a scale-invariant probability measure on chords in the upper half-plane from
0 to ∞. What does it mean to say that µ has the locality property?

(b) Let γ be an SLE(6) and let Φ : N → N∗ be a conformal isomorphism of one
neighbourhood of 0 in H to another. Assume that Φ(0) = 0 and that Φ(N̄ ∩ R) = N∗ ∩ R. Set
T = inf{t ≥ 0 : γt 6∈ N} and define, for t < T ,

γ∗t = Φ(γt).

Write (ξ∗t )t<T for the Loewner transform of (γ∗t )t<T . Show that (ξ∗t )t<T is a local martingale.

(c) Deduce that the law of [γ] has the locality property.
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