MATHEMATICAL TRIPOS Part III

Monday 9 June 2008 1.30 to 3.30

PAPER 36

STOCHASTIC LOEWNER EVOLUTIONS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS Cover sheet None Treasury tag Script paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (a) Let K be a compact \mathbb{H} -hull and set $H = \mathbb{H} \setminus K$. Show that there exists a unique conformal isomorphism $g_K : H \to \mathbb{H}$ such that $g_K(z) - z \to 0$ as $z \to \infty$.

(b) Suppose that K_0 is a compact \mathbb{H} -hull and $g_{K_0}(z) = z + z^{-1}$ for all $z \in \mathbb{H} \setminus K_0$. Identify K_0 and find hcap (K_0) .

(c) Suppose that $|z| \leq 1$ for all $z \in K$. Show that, for all $x \in \mathbb{R}$ with |x| > 1,

$$1 - x^{-2} \le g'_K(x) \le 1.$$

[In (c), you may use without proof any result from the course.]

2 (a) Let $(\gamma_t)_{t\geq 0}$ be an SLE (κ) , for some $\kappa \in [0, \infty)$. Explain the relation to $(\gamma_t)_{t\geq 0}$ of the associated Loewner flow $(g_t)_{t\geq 0}$ and transform $(\xi_t)_{t\geq 0}$.

(b) Fix $s \ge 0$ and define for $t \ge 0$

$$\bar{\gamma}_t = g_s(\gamma_{s+t}), \quad \tilde{\gamma}_t = \bar{\gamma}_t - \xi_s.$$

What is the Loewner transform of $(\bar{\gamma}_t)_{t\geq 0}$? What is the distribution of $(\tilde{\gamma}_t)_{t\geq 0}$? Justify your answers.

(c) Suppose now that $\kappa \in (0, 4]$. Show that, almost surely, $(\gamma_t)_{t\geq 0}$ is a simple curve. [You may assume without proof that, almost surely, $\operatorname{Im}(\gamma_t) > 0$ for all t > 0.]

3 (a) Let γ be an SLE(8/3). Let U be a simply connected domain in the upper half-plane \mathbb{H} , which is a neighbourhood of both 0 and ∞ . Denote by Φ the unique conformal isomorphism $U \to \mathbb{H}$ such that $\Phi(z)-z \to 0$ as $z \to \infty$. Set $K_t = \{\gamma_s : 0 < s \leq t\}$ and $T = \inf\{t \geq 0 : \gamma_t \notin U\}$. Define, for t < T,

$$K_t^* = \{ \Phi(\gamma_s) : 0 < s \le t \}, \quad \Phi_t = g_{K_t^*} \circ \Phi \circ g_{K_t}^{-1},$$

where, for K a compact \mathbb{H} -hull, $g_K : (\mathbb{H} \setminus K) \to \mathbb{H}$ is the unique conformal isomorphism such that $g_K(z) - z \to 0$ as $z \to \infty$. Set

$$\Sigma_t = \Phi_t'(\xi_t),$$

where ξ is the Loewner transform of γ . Show that a suitably chosen function of the process Σ is a local martingale.

(b) Hence, show that

$$\mathbb{P}(\gamma_t \in U \text{ for all } t \ge 0) = \Phi'(0)^{5/8}.$$

[You may assume without proof any standard identities of the classical Loewner theory, or for the Brownian excursion. You may also assume that $\Sigma_t \to 1_{\{T=\infty\}}$ as $t \uparrow T$, almost surely.] 4 (a) Let μ be a scale-invariant probability measure on chords in the upper half-plane from 0 to ∞ . What does it mean to say that μ has the locality property?

(b) Let γ be an SLE(6) and let $\Phi : N \to N^*$ be a conformal isomorphism of one neighbourhood of 0 in \mathbb{H} to another. Assume that $\Phi(0) = 0$ and that $\Phi(\overline{N} \cap \mathbb{R}) = \overline{N^*} \cap \mathbb{R}$. Set $T = \inf\{t \ge 0 : \gamma_t \notin N\}$ and define, for t < T,

$$\gamma_t^* = \Phi(\gamma_t).$$

Write $(\xi_t^*)_{t < T}$ for the Loewner transform of $(\gamma_t^*)_{t < T}$. Show that $(\xi_t^*)_{t < T}$ is a local martingale.

(c) Deduce that the law of $[\gamma]$ has the locality property.

END OF PAPER