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1 a) Prove that Xt = (1− t)
∫ t

0
dβs

1−s satisfies the SDE

dXt = dβt − Xt

1−t dt, X(0) = 0, t ∈ [0, 1)

where β is a one-dimensional Brownian motion. Show that

Xt = Bt − (1− t)
∫ t

0

βs

(1−s)2 ds

b) Prove that if we set X1 = 0, then Xt is the Gaussian process defined on [0, 1]
with mean E(Xt) = 0 and covariance Γ(s, t) = s(1 − t), s ≤ t. (A process Xt, t ∈ [0, 1],
is Gaussian if for any family (t1, . . . , tn) in [0, 1], the random vector (Xt1 , . . . , Xtn) is
Gaussian.)

c) Show that limt↑1 Xt = 1 a.s. (Hint: Define Yt = X1−t and prove that X and Y ,
as processes, have the same distribution.)

2 a) Two martingales M, N ∈ M2
c , M(0) = N(0) = 0, are said to be weakly

orthogonal if E(MsNt) = 0 for all s, t ≥ 0. Prove that the following are equivalent:

i) M and N are weakly orthogonal,

ii) E(MsNs) = 0 ∀ s ≥ 0,

iii) E([M,N ]s) = 0 ∀ s ≥ 0 ([M,N ] the covariation process of M and N),

iv) E(MT Ns) = 0 ∀ s ≥ 0 and stopping time T ≥ s.

b) Two martingales M, N ∈ M2
c , M(0) = N(0) = 0, are said to be orthogonal if

MN is a martingale. Prove that M, N are orthogonal if and only if E(MT Ns) = 0 for all
s ≥ 0, T stopping time, T ≤ s. ( You will need to use that X is a martingale if and only
if E(XT ) = E(X0) for all bounded stopping times T .)

c) Using Kunita Watanabe identity or otherwise, find M, N ∈M2
c , M(0) = N(0) =

0 such that M, N are weakly orthogonal but not orthogonal.

d) Prove that if M ∈ Mc,loc is such that E([M ]∞) < ∞ then M ∈ M2
c . ([M ]

stands for the quadratic variation process of M .)
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3 a) State the existence and uniqueness theorem for maximal local solutions to SDEs
with locally Lipschitz coefficients.

b) Let σ : R → R>0 and b : R → R be locally Lipschitz and such that there exists
a positive constant K so that

σ2(x) + b2(x) ≤ K(1 + x2)

for all x ∈ R. Let (X, ξ) be the maximal solution to

dXt = σ(Xt)dβt + b(Xt)dt, X0 = 0

and Tn = inf{t ≥ 0, |Xt| ≥ n}. Develop |Xt∧Tn
|2 by means of Itô’s lemma to prove that

P(Tn ≤ t) → 0 as n ↑ ∞ for all t ≥ 0, and conclude that ξ = ∞ a.s..

4 a) Let M be a (Ft, P) continuous local martingle vanishing at 0 and such that the
quadratic variation process [M ] is strictly increasing and satisfies [M ] = ∞ a.s.. Set

Ts = inf{u, [M ]u ≥ s}.

Prove that Ts is a stopping time for each s, and βt = MTt
is a FTt

-Brownian motion such
that Mt = β([M ]t).

b) Show that if M ∈ Mc,loc is such that M(0) = 0 and [M ]t is deterministic,
strictly increasing and such that [M ]∞ = 0, then M is a Gaussian martingale and has
independent increments. (See question 1b) for the definition of a Gaussian process)

c) Give an example of a continuous martingale that does not have independent
increments.

d) Let β be standard Brownian motion, Ft its natural filtration. Define Mt =
β(t2). Is M a Ft-martingale? If not, find a filtration with respect to which M is a
martingale. Find a continuous mapping f and another Brownian motion W such that
M(t) =

∫ t

0
f(s)dWs.

5 Write an essay explaining some connections between the diffusion process X in Rd

with generator

Lf(x) = 1
2

d∑
i,j=1

aij(x) ∂2f
∂xi∂xj +

d∑
i=1

bi(x) ∂f
∂xi

and second-order partial differential equations of elliptic and parabolic type. For full credit
you should, in particular, establish at least one representation formula for the solution of
a partial differential equation in terms of the process X.
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6 The following is a stochastic model for two competing species, having populations
Xt and Yt at time t. At an exponential rate of λXt (respectively µXtYt/N) the X
population increases (respectively decreases) by 1. Independently, at an exponential rate
of λYt (respectively µXtYt/N) the Y population increases (respectively decreases) by
1. Thus the first change in the total population occurs at an exponential time of rate
λ(X0 + Y0) + 2µX0Y0/N . Write down the Lévy kernel for the Markov jump process
(Xt, Yt)t≥0.

Assume that initially the two populations are equal, of size N . Obtain an approx-
imating differential equation for (Xt, Yt)/N and comment of the qualitative behaviour of
its solution in the two cases λ < µ and λ > µ.

Explain how to derive an estimate of the probability that the process (Xt, Yt)/N
deviates by more than a given δ > 0 over a given time interval [0, t0] from the solution
of the differential equation. [You may assume any form of the exponential martingale
inequality.]

END OF PAPER
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