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STOCHASTIC CALCULUS AND APPLICATIONS

Attempt FOUR questions.

There are six questions in total.

The questions carry equal weight.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1 Let X = (Ω,F) be a measurable space equipped with a probability measure P and
a filtration {Ft}t≥0, and let Xt(ω) be a continuous (Ft, P)-semimartingale.

a) Show that a continuous local martingale of finite variation starting from 0 must
necessarily be identically 0, P-a.s.; therefore conclude that the decomposition of Xt into a
local martingale part and a part of finite variation is unique.

b) Show that the quadratic variation process [X]t does not depend on the filtration.
(You may use without proof any formula for [X]t proved in the lectures). Suppose now
that Q is another probability measure, absolutely continuous with respect to P and that
X is a (Q,Ft)-semimartingale, as well. Show that the quadratic variation process of X is
the same regardless of which measure (P or Q) we use to compute it.

c) Prove that a local martingale Mt is a martingale if and only if for all t > 0 the
family:

{MT : T is a stopping time ≤ t}

is uniformly integrable.

2 a) State and prove the integration by parts formula for continuous semimartingales.
State (the multidimensional) Itô’s formula, and describe (without proof) how to establish
it from the integration by parts formula.

b) Let X(t) = B(t) + µt (µ 6= 0), where B(t) is a Brownian motion on R started
from x. For b > |x|, set T+ = inf{t ≥ 0 : X(t) ≥ b}, T− = inf{t ≥ 0 : X(t) ≤ −b} and
T = T− ∧ T+. First show that E[T 2] < ∞. Then, using a suitable function f such that
f(Xt) is a martingale, compute the probability P(T− < T+).
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3 Let B(t) be standard Brownian motion on R, and Ft be its natural filtration. For
a λ > 0, we define:

X(t) = B(e2λt), and Gt = Fe2λt .

a) Show that X(t) is a Gt-martingale and compute its quadratic variation process.

b) Write X(t) as a stochastic integral with respect to a Gt-adapted Brownian motion
W (t) (that you will construct).

c) Conclude that the process

Y (t) = e−λtB(e2λt)

satisfies the Ornstein-Uhlenbeck stochastic differential equation:

dY (t) =
√

2λdW (t)− λY (t) dt,

and solve the equation to express Y (t) explicitly in terms of W (·).

d) Suppose Z(t) is a stationary process satisfying E[Z(0)2] = 1, and the stochastic
differential equation:

dZ(t) =
√

2λdW (t) + g(t, ω) dt,

where g is a Gt adapted process such that E[g2(t, ω)] 6 λ2, for all t. By considering the
semimartingale decomposition of Z(t)2, or otherwise, prove that Z(·) = Y (·), a.s..

4 a) The following stochastic differential equation:

dX(t) = αX(t) dB(t) + Xδ(t) dt

X(0) = x0 > 0,

where α ∈ R and δ > 0, has as you know a unique maximal local solution on
(0,∞). Write down the equation satisfied by Y (t) = X(t)/F (B(t), t) where F (B(t), t) =
exp(αB(t)− α2t/2), and solve it to find the solution to the original equation explicitly.

b) For which values of δ does the solution exist for all t ≥ 0 with probability 1?
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5 a) Let X be a measurable space equipped with a filtration Ft, and let P, Q be two
probability measures on X such that for A ∈ Ft, we have:

Q(A) =
∫

A

exp(Mt − [M ]t/2) dP,

where the process M is a continuous (Ft, P)-martingale. Show that if X is a continuous
(Ft, P)-(local martingale) then X̃ := X−[X, M ] is a continuous (Ft, Q)-(local martingale).

b) Show that if X is a Brownian motion under P, then X̃ is a Brownian motion
under Q. Use this fact to show that if Px is the distribution of the solution to the stochastic
differential equation:

dXs = dBs − µXs ds, X0 = x,

and Qx is the Wiener measure on paths (ωs : s > 0) in C([0,∞); R) starting from x, then:

dPx

dQx

∣∣∣∣
Ft

= exp
(
−µ

∫ t

0

ωs dωs − µ2

2

∫ t

0

ω2
s ds

)
. (1)

6 Let u(t, x) be a function in C1,2(R+ × Rd; R+) satisfying the following partial
differential equation problem:{

∂u
∂t (t, x) = 1

2∆u(t, x)− λx · ∇u(t, x) + λ2|x|2
2 u(t, x)

u(0, x) = 1.

a) By formally applying the Feynman-Kac formula, or otherwise, give a probabilistic
interpretation of the solution u(t, x) as an integral on the space of continuous paths.

b) Write u(t, x) as an integral on the space of continuous paths with respect to the
Wiener measure. You may find (1) useful, and you may use it.

c) Now find u(t, x) explicitly.
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