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1 State and prove Cochran’s theorem.

Explain how Cochran’s theorem may be applied to the problem of testing hypothe-
ses in a linear model.

[You should define the model and the hypotheses carefully. You may assume that
the likelihood ratio statistic is of the form

wLR(H0) = n log
(
1 +

A

B

)
,

but should state explicit expressions for A and B. Formal verification of the conditions of
Cochran’s theorem is not required.]

2 We write Y ∼ IG(φ, λ) if the density of Y is

f(y;φ, λ) =
λ1/2

(2π)1/2y3/2
e(λφ)1/2 exp

{
−1

2

(λ
y

+ φy
)}
, y ∈ (0,∞), φ ∈ (0,∞), λ ∈ (0,∞).

Let Y1, . . . , Yn be independent IG(φ, λ) random variables. By first computing the
cumulant generating function of n−1

∑n
i=1 Yi, find the density of Sn =

∑n
i=1 Yi.

What is meant by a saddlepoint approximation to the density of a sum of indepen-
dent and identically distributed random variables? [An explicit expression for the O(n−1)
term is not required.]

Compute the saddlepoint approximation to the density of Sn defined above.
Comment on the accuracy of the approximation.

Now suppose Y1, . . . , Yn are independent with density

g(y) =
5(
√

5− 1)
4π(1 + y10)

, y ∈ R.

Without doing any calculations, explain briefly why it would not be appropriate to try to
compute the saddlepoint approximation to the density of

∑n
i=1 Yi in this case.
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3 Consider a model with two real-valued parameters, where one is of interest and
the other is a nuisance parameter. What is meant by saying that the two parameters are
orthogonal? What is meant by an interest-respecting reparametrisation? Give an informal
derivation of a differential equation that may be used to find an orthogonal, interest-
respecting reparametrisation.

Now suppose Y has density

f(y;ψ, σ) =
1
σ

(
1 +

ψy

σ

)−(1+ 1
ψ )

, y ∈ (0,∞), ψ ∈ (0,∞), σ ∈ (0,∞),

where ψ is of interest and σ is a nuisance parameter. Show that ψ and σ are not orthogonal.

Find an orthogonal, interest-respecting reparametrisation.

[You may assume without proof that if a is a non-negative integer, b ∈ (0,∞)
satisfies b− a > 1 and c ∈ (0,∞), then∫ ∞

0

ya(1 + cy)−b dy =
a!

ca+1(b− 1)(b− 2) . . . (b− a− 1)
.

]

4 Let Y1, . . . , Yn be independent N(µ, σ2) random variables, and suppose that we
are interested in testing H0 : σ2 = σ2

0 against H1 : σ2 6= σ2
0 . Write down expressions

for the maximum likelihood estimator σ̂2 of σ2, and the constrained maximum likelihood
estimator µ̂σ2 of µ for a fixed value of σ2. Show that, under H0, the likelihood ratio
statistic may be written as

wLR(σ2
0) = n{− log(1 + V ) + V },

where V = (U − n)/n and U ∼ χ2
n−1.

Define what is meant by the Bartlett correction factor, and the Bartlett-corrected
likelihood ratio statistic. By integrating an asymptotic expansion term by term, which you
may assume is valid, show that in the example above, the Bartlett correction factor is
11/6.

[You may assume without proof that if r ∈ N and U ∼ χ2
n−1, then

E(Ur) =
(
n− 1 + 2(r − 1)

)(
n− 1 + 2(r − 2)

)
. . . (n− 1).

You should bound the higher moments of V by using the fact that if T1, . . . , Tn−1 are
independent and identically distributed with E(Ti) = 0 and E(|Ti|r) < ∞ for some r ∈ N
with r > 2, then there exists a finite constant C(r) such that∣∣∣∣E{(n−1∑

i=1

Ti

)r}∣∣∣∣ 6

{
C(r)nr/2 if r is even
C(r)n(r−1)/2 if r is odd.

]
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