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Statistical Theory

Attempt FOUR questions.

There are six questions in total.

The questions carry equal weight.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1 Let X1, . . . , Xn be independent random variables with density f(x). Define what
is meant by a kernel K(x), and by the kernel density estimate f̂h(x) of f(x), with kernel
K and bandwidth h > 0.

Define the mean integrated squared error (MISE) of f̂h, and derive an exact
expression for this quantity in terms of f and the scaled kernel Kh, where Kh(x) =
h−1K(x/h).

For a symmetric, second-order kernel, under regularity conditions, the minimum
value of the asymptotic MISE may be expressed as

inf
h>0

AMISE(f̂h) =
5
4
{µ2(K)2R(K)4R(f ′′)}1/5n−4/5,

where µ2(K) =
∫∞
−∞ x2K(x) dx, and R(g) =

∫∞
−∞ g(x)2 dx for a square integrable function

g : R → R. Show that R(f ′′) may be made arbitrarily small by means of a scale
transformation af(ax) of f(x), but that

D(f) = σ(f)5R(f ′′)

is scale invariant, where

σ(f)2 =
∫ ∞

−∞
x2f(x) dx−

(∫ ∞

−∞
xf(x) dx

)2

.

Let
f0(x) =

35
32

(1− x2)31{|x|<1},

and let h(x) be another twice continuously differentiable density satisfying
∫∞
−∞ xh(x) dx =

0 and σ(h) = σ(f0). By considering e(x) = h(x) − f0(x) or otherwise, show that
R(h′′) > R(f ′′0 ).
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2 Let X1, . . . , Xn be independent random variables with continuous distribution
function F (x). Define the empirical distribution function, F̂n(x), and show that the
distribution of

Dn = sup
x∈R

|F̂n(x)− F (x)|

does not depend on F . Explain how this result may be used to construct a confidence
band for F of (1− α)-level coverage.

State the Glivenko-Cantelli theorem.

Now suppose X1, . . . , Xn are independent with distribution function F , and that
θ = θ(F ) is a parametric function which may be expressed as θ(F ) = EF {h(X1, . . . , Xr)}.
Explain why we may always choose h to be symmetric in its arguments. For n > r, define
what is meant by a U -statistic for θ with kernel h.

Let θ(F ) denote the variance of a random variable with distribution function F .
Find a function h : R2 → R which is symmetric in its arguments and which satisfies
θ(F ) = EF {h(X1, X2)}. Evaluate the corresponding U -statistic and simplify your answer
as much as possible.

3 Write brief accounts about Edgeworth expansions and saddlepoint approximations
to the densities of sums of independent, identically distributed random variables. You
should include a description of any notable ways in which the approximations differ.

Let Y1, . . . , Yn be independent random variables with the Laplace density

fY (y) =
1
2
e−|y|, y ∈ R,

for which the cumulant generating function is KY (t) = − log(1− t2) for |t| < 1. Compute
the Edgeworth expansion and saddlepoint approximation to the density of Sn =

∑n
i=1 Yi,

up to, but not including, terms of order n−1.

4 Describe in detail three commonly-used techniques of bandwidth selection in kernel
density estimation, mentioning briefly their asymptotic properties.

Hint: you may find the following formulae helpful:

hAMISE =
(

R(K)
R(f ′′)µ2(K)2n

)1/5

, AMISE(f̂h) =
1
nh
R(K) +

1
4
h4µ2(K)2R(f ′′),

and
E{R(f̂ ′′h )} = R(f ′′) +

1
nh5

R(K ′′) +O(h2)

as n → ∞. When estimating R(f ′′) by R̂
(2)
g = n−1

∑n
i=1 f̂

(4)
g (Xi), the optimal AMSE

bandwidth is
gAMSE ∝ R(f ′′′)−1/7n−1/7.
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5 Give a brief description of marginal and profile likelihoods, contrasting the ways in
which they are used to deal with nuisance parameters.

Let X1, . . . , Xm, Y1, . . . , Yn be independent exponential random variables with
X1, . . . , Xm having mean 1/(ψλ) and Y1, . . . , Yn having mean 1/λ. Further, let X =∑m

i=1Xi and Y =
∑n

i=1 Yi. Write down the joint density of X and Y . Consider the
transformation

T =
X

Y
, U = Y.

By first computing the joint density of T and U , find the marginal density of T and show
that the marginal log-likelihood for ψ based on T is

`(ψ; t) = m logψ − (m+ n) log(ψt+ 1).

Compute the maximum likelihood estimate of λ for fixed ψ, and hence show that
the profile log-likelihood for ψ is identical to `(ψ; t) above.

6 Describe the Wald, score and likelihood ratio tests for hypotheses concerning
a multidimensional parameter θ. Explain briefly how they can be used to construct
confidence regions for θ of approximate (1− α)-level coverage.

Let Y0, Y1, . . . , Yn be a sequence of random variables such that Y0 has a Poisson
distribution with mean θ and for i > 1, conditional on Y0, . . . , Yi−1, the random variable
Yi has a Poisson distribution with mean θYi−1. The parameter θ satisfies 0 < θ 6 1.
Find the log-likelihood for θ, and show that the maximum likelihood estimator, θ̂ =
θ̂(Y0, Y1, . . . , Yn), may be expressed as θ̂ = min(θ̃, 1), where θ̃ = θ̃(Y0, Y1, . . . , Yn) is a
function which should be specified.

For θ ∈ (0, 1), compute the Fisher information i(θ), and show that

i(θ) 6
1

θ(1− θ)

for all n.

Deduce that the Wald statistic for testing H0 : θ = θ0 against H1 : θ 6= θ0,
where 0 < θ0 < 1, does not have an asymptotic chi-squared distribution under the null
hypothesis.
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