

MATHEMATICAL TRIPOS Part III

Friday 3 June, 2005 9 to 12

PAPER 5

SOME INEQUALITIES

Attempt **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet

Cover sneet Treasury tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

2

1 State Hölder's inequality.

Suppose that $1/p_1 + \cdots + 1/p_n = 1/r \leq 1$ and that $f_i \in L_{p_i}$ for $1 \leq i \leq n$. Show that $f_1 \dots f_n \in L_r$ and

$$||f_1 \dots f_n||_r \leq ||f_1||_{p_1} \dots ||f_n||_{p_n}$$

Suppose that K is a compact subset of \mathbf{R}^4 . Let K_j be the image of K under the orthogonal projection onto the subspace orthogonal to the *j*-th axis. Show that

$$\lambda_4(K) \leqslant (\prod_{j=1}^4 \lambda_3(K_j))^{1/3}.$$

[Here λ_d denotes *d*-dimensional Lebesgue measure.]

[You may assume the truth of the corresponding result, and related results, in dimension 3.]

2 Suppose that $(x_i)_{i=1}^{\infty}$ and $(y_i)_{i=1}^{\infty}$ are decreasing sequences of positive numbers, that $\sum_{i=1}^{n} x_i \leq \sum_{i=1}^{n} y_i$ for each n and that $\sum_{i=1}^{\infty} x_i = \sum_{i=1}^{\infty} y_i$. Show that there exists a doubly stochastic matrix $P = (p_{ij})$ such that $x_i = \sum_{j=1}^{\infty} p_{ij}y_j$, for each i.

3 (i) What does it mean to say that a sublinear mapping S of $L^1(\mathbf{R})$ into $M(\mathbf{R})$ (the measurable functions on \mathbf{R}) is of weak type (1, 1)?

(ii) Suppose that $(T_r)_{r\geq 0}$ is a family of linear mappings from $L^1(\mathbf{R})$ into $M(\mathbf{R})$ and that S is a sublinear mapping of $L^1(\mathbf{R})$ into $M(\mathbf{R})$ which is of weak type (1, 1), such that

- (a) $|T_r(g)| \leq S(g)$ for all $g \in L^1(\mathbf{R}), r \geq 0$, and
- (b) there is a dense subspace F of E such that $T_r(f) \to T_0(f)$ almost everywhere, for $f \in F$, as $r \to 0$.

Show that if $g \in E$ then $T_r(g) \to T_0(g)$ almost everywhere, as $r \to 0$.

(iii) If $f \in L^1(\mathbf{R})$, let

$$m_u(f)(x) = \sup\{\frac{1}{r} \int_y^{y+r} |f(t)| \, dt : r > 0, \, y < x < y+r\}.$$

Show that m_u is of weak type (1, 1). [You may quote any covering lemma that you need.]

(iv) Suppose that $f \in L^1(\mathbf{R})$. Let $F(x) = \int_0^x f(t) dt$. Show that F is differentiable almost everywhere.

Paper 5

4 (i) Suppose that $1 \leq p_0 < p_1 < \infty$, that $0 < \theta < 1$ and that $1/p = (1-\theta)/p_0 + \theta/p_1$. Show that

$$L^{p_0} \cap L^{p_1} \subseteq L^p \subseteq L^{p_0} + L^{p_1}$$

and that if $f \in L^p$ then we can write f = g + h with $\|g\|_{p_0}^{1-\theta} \|h\|_{p_1}^{\theta} \leq \|f\|_p$.

(ii) Suppose further that $1 \leq q_0, q_1 \leq \infty$ and $1/q = (1-\theta)/q_0 + \theta/q_1$. In the proof of the Riesz-Thorin Theorem it is shown that if T is a linear mapping from $L^{p_0} + L^{p_1}$ to $L^{q_0} + L^{q_1}$ with $||T : L^{p_i} \to L^{q_i}|| = M_i$, for i = 0, 1, then if f is a simple function, $||T(f)||_q \leq M_0^{1-\theta} M_1^{\theta} ||f||_p$. Show how this result extends to any $f \in L^p$.

(iii) Suppose that 2 and that <math display="inline">1/p + 1/p' = 1. Show that if x and y are complex numbers then

$$\left(\frac{1}{2}(|x+y|^p+|x-y|^p)\right)^{1/p} \leq \left(|x|^{p'}+|y|^{p'}\right)^{1/p'}.$$

Show further that if f and g are in L^p then

$$\left(\frac{1}{2}(\|f+g\|_p^p + \|f-g\|_p^p)\right)^{1/p} \leqslant \left(\|f\|_p^{p'} + \|g\|_p^{p'}\right)^{1/p'}.$$

[Hint: Use Minkowski's inequality in $L^{p/p'}$.]

5 Suppose that a_1, \ldots, a_d are vectors in a normed space E and that $\epsilon_1, \ldots, \epsilon_d$ are independent Bernoulli random variables. Show that

$$\left\|\sum_{i=1}^{d} \epsilon_{i} a_{i}\right\|_{L^{2}(E)} \leqslant \sqrt{2} \left\|\sum_{i=1}^{d} \epsilon_{i} a_{i}\right\|_{L^{1}(E)}$$

END OF PAPER