PAPER 55

SOLITONS AND INSTANTONS

Attempt no more than THREE questions.
 There are FOUR questions in total.
 The questions carry equal weight.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Cover sheet
None
Treasury tag
Script paper

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Consider the following action for sine-Gordon equation on a space-time \mathbb{R}^{2}, in the presence of an external electromagnetic potential $A_{0} d t+A_{1} d x$, (where $A_{0}(t, x)$ and $A_{1}(t, x)$ are given and smooth):

$$
S\left[\theta, \theta_{t}\right]=\int\left[\frac{1}{2} \theta_{t}^{2}-\frac{1}{2} \theta_{x}^{2}-(1-\cos \theta)-A_{0} \theta_{x}+A_{1} \theta_{t}\right] d t d x
$$

Show that the corresponding equation of motion (the Euler-Lagrange equation) is

$$
\theta_{t t}-\theta_{x x}+\sin \theta+E=0
$$

where E is the electric field $E \equiv \partial_{t} A_{1}-\partial_{x} A_{0}$. In the case that E is everywhere zero, this equation has static "kink" solutions given by $\theta_{K}(x) \equiv 4 \arctan e^{x}$. (You need not prove this). Deduce that the formulas

$$
\theta(t, x)=\theta_{K}(\gamma(x-X(t))), \quad \theta_{t}(t, x)=-\gamma u \theta_{K}^{\prime}(\gamma(x-X(t)))
$$

define a solution as long as $X(t)=X_{0}+u t$, for any constants $X_{0} \in \mathbb{R}, u \in(-1,+1)$, and with $\gamma=\left(1-\dot{X}^{2}\right)^{-\frac{1}{2}}$ and E still everywhere zero.

Now, assuming that $A_{1} \equiv 0$ and $A_{0}(t, x)=x f(t)$, calculate the following action functional:

$$
S_{e f f}[X, \dot{X}] \equiv S\left[\theta_{K}(\gamma(x-X)),-\gamma u \theta_{K}^{\prime}(\gamma(x-X))\right]
$$

by substituting the above exact solution into S, and show that it is equal to:

$$
S_{e f f}[X, \dot{X}]=-\int\left[8 \sqrt{1-\dot{X}^{2}}+2 \pi X f(t)\right] d t
$$

(This "effective" action could be expected to give an approximation to the motion of kinks under the influence of the external potential for small f.) Obtain the equation of motion for X which follows from $S_{e f f}$, and comment on your answer.

2 Consider the static abelian Higgs model on the spatial domain $\Sigma=\{z=x+i y \in \mathbb{C}$: $\left.|z|^{2}=x^{2}+y^{2}<1\right\}$, with metric

$$
g=e^{2 \rho}\left(d x^{2}+d y^{2}\right)=\frac{8\left(d x^{2}+d y^{2}\right)}{\left(1-x^{2}-y^{2}\right)^{2}} .
$$

Φ is a section of a complex line bundle L over Σ, and $D=\left(D_{x}, D_{y}\right)=\left(\partial_{x}-i A_{1}, \partial_{y}-i A_{2}\right)$ is the covariant derivative acting on sections of L, determined by the connection one-form $A=A_{1} d x+A_{2} d y$. The associated magnetic field B is defined by $B=e^{-2 \rho}\left(\partial_{x} A_{2}-\partial_{y} A_{1}\right)$.

The energy is

$$
V(A, \Phi)=\frac{1}{2} \int_{\Sigma}\left[e^{-2 \rho}\left(\partial_{x} A_{2}-\partial_{y} A_{1}\right)^{2}+\left|D_{x} \Phi\right|^{2}+\left|D_{y} \Phi\right|^{2}+\frac{e^{2 \rho}}{4}\left(1-|\Phi|^{2}\right)^{2}\right] d x d y
$$

Derive the Bogomolny decomposition for $V(A, \Phi)$ and hence obtain a lower bound for V which depends on N, the degree (or winding number), of Φ. Hence, or otherwise, show that for $N=1$ this lower bound is achieved by the following Φ :

$$
\Phi=\frac{2 z}{1+|z|^{2}}
$$

for a particular connection A, which should be given explicitly.

3 Explain the Derrick argument, and its consequences for the non-existence of static solitons, in theories describing fields $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{l}$ with energy

$$
V(\phi)=\int_{\mathbb{R}^{n}}\left[\frac{1}{2}|\nabla \phi|^{2}+U(\phi)\right] d^{n} x,
$$

where $U \geqslant 0$.
Explain why this argument does not rule out the existence of solitons for (i) the Yang-Mills-Higgs energy on \mathbb{R}^{3}, (ii) the σ - model (or harmonic map) energy on \mathbb{R}^{2}.

Consider a field theory for $\phi: \mathbb{R}^{1+n} \rightarrow \mathbb{C}$ determined by an action of the form

$$
S(\phi)=\int_{\mathbb{R}^{1+n}}\left[\frac{1}{2}\left|\phi_{t}\right|^{2}-\frac{1}{2}|\nabla \phi|^{2}-U(\phi)\right] d t d^{n} x .
$$

You may assume that $U=U\left(|\phi|^{2}\right)$.
Derive the corresponding equation of motion (the Euler-Lagrange equation). Define a "non-topological soliton" for this equation and explain why the Derrick argument does not rule out the existence of such solutions for $n>1$. Give, without proof, an example of a potential U for which such solutions do exist.

4 Let $A=A_{1} d x^{1}+A_{2} d x^{2}+A_{3} d x^{3}$ be an $s u(2)$-valued one-form on \mathbb{R}^{3} defining a covariant derivative operator $D=\nabla+[A, \cdot]$ on $s u(2)$-valued functions $\Phi: \mathbb{R}^{3} \rightarrow s u(2)$. Define the corresponding curvature two-form $F=\sum_{j<k} F_{j k} d x^{j} \wedge d x^{k}$. Use the inner product $\langle\Phi, \Psi\rangle=-\frac{1}{2} \operatorname{tr} \Phi \Psi$ and corresponding norm $|\Phi|^{2}=\langle\Phi, \Phi\rangle$. Show that

$$
\frac{\partial}{\partial x^{j}}\langle\Phi, \Psi\rangle=\left\langle D_{j} \Phi, \Psi\right\rangle+\left\langle\Phi, D_{j} \Psi\right\rangle
$$

Derive the equations of motion (the Euler-Lagrange equations) for the Yang-Mills-Higgs energy functional on \mathbb{R}^{3} :

$$
V(A, \Phi)=\int_{\mathbb{R}^{3}} v(A, \Phi) d^{3} x \quad v(A, \Phi)=|B|^{2}+|D \Phi|^{2}
$$

where $B_{i}=\frac{1}{2} \epsilon_{i j k} F_{j k}$. Show that if A, Φ solve the equations $B_{i}=D_{i} \Phi, i=1,2,3$ then A, Φ also solve the equations of motion just derived. Assuming still that $B_{i}=D_{i} \Phi, i=1,2,3$, find a formula for $\Delta|\Phi|^{2}$, where $\Delta=\sum_{j=1}^{3} \frac{\partial^{2}}{\partial x^{j^{2}}}$, in terms of the energy density $v(A, \Phi)$.

END OF PAPER

