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1 Consider the following action for sine-Gordon equation on a space-time R2, in the presence
of an external electromagnetic potential A0dt + A1dx, (where A0(t, x) and A1(t, x) are given
and smooth):

S[θ, θt] =
∫ [1

2
θ2
t −

1
2
θ2
x − (1− cos θ)−A0θx +A1θt

]
dtdx.

Show that the corresponding equation of motion (the Euler-Lagrange equation) is

θtt − θxx + sin θ + E = 0

where E is the electric field E ≡ ∂tA1 − ∂xA0. In the case that E is everywhere zero, this
equation has static “kink” solutions given by θK(x) ≡ 4 arctan ex.(You need not prove this).
Deduce that the formulas

θ(t, x) = θK
(
γ(x−X(t))

)
, θt(t, x) = −γuθ′K

(
γ(x−X(t))

)
define a solution as long as X(t) = X0 + ut, for any constants X0 ∈ R, u ∈ (−1,+1), and with
γ = (1− Ẋ2)−

1
2 and E still everywhere zero.

Now, assuming that A1 ≡ 0 and A0(t, x) = xf(t), calculate the following action
functional:

Seff [X, Ẋ] ≡ S
[
θK
(
γ(x−X)

)
,−γuθ′K

(
γ(x−X)

)]
by substituting the above exact solution into S, and show that it is equal to:

Seff [X, Ẋ] = −
∫ [

8
√

1− Ẋ2 + 2πXf(t)
]
dt.

(This “effective” action could be expected to give an approximation to the motion of kinks
under the influence of the external potential for small f .) Obtain the equation of motion for X
which follows from Seff , and comment on your answer.
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2 Consider the static abelian Higgs model on the spatial domain Σ = {z = x + iy ∈ C :
|z|2 = x2 + y2 < 1}, with metric

g = e2ρ(dx2 + dy2) =
8(dx2 + dy2)

(1− x2 − y2)2
.

Φ is a section of a complex line bundle L over Σ, and D = (Dx, Dy) = (∂x − iA1, ∂y − iA2)
is the covariant derivative acting on sections of L, determined by the connection one-form
A = A1dx+A2dy. The associated magnetic field B is defined by B = e−2ρ(∂xA2 − ∂yA1).

The energy is

V (A,Φ) =
1
2

∫
Σ

[
e−2ρ(∂xA2 − ∂yA1)2 + |DxΦ|2 + |DyΦ|2 +

e2ρ

4
(1− |Φ|2)2

]
dxdy.

Derive the Bogomolny decomposition for V (A,Φ) and hence obtain a lower bound for V
which depends on N , the degree (or winding number), of Φ. Hence, or otherwise, show that for
N = 1 this lower bound is achieved by the following Φ:

Φ =
2z

1 + |z|2

for a particular connection A, which should be given explicitly.

3 Explain the Derrick argument, and its consequences for the non-existence of static
solitons, in theories describing fields φ : Rn → Rl with energy

V (φ) =
∫

Rn

[1
2
|∇φ|2 + U(φ)

]
dnx,

where U > 0.

Explain why this argument does not rule out the existence of solitons for (i) the Yang-
Mills-Higgs energy on R3, (ii) the σ− model (or harmonic map) energy on R2.

Consider a field theory for φ : R1+n → C determined by an action of the form

S(φ) =
∫

R1+n

[1
2
|φt|2 −

1
2
|∇φ|2 − U(φ)

]
dtdnx.

You may assume that U = U(|φ|2).

Derive the corresponding equation of motion (the Euler-Lagrange equation). Define a
“non-topological soliton ” for this equation and explain why the Derrick argument does not rule
out the existence of such solutions for n > 1. Give, without proof, an example of a potential U
for which such solutions do exist.
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4 Let A = A1dx
1 + A2dx

2 + A3dx
3 be an su(2)−valued one-form on R3 defining a

covariant derivative operator D = ∇ + [A, ·] on su(2)−valued functions Φ : R3 → su(2).
Define the corresponding curvature two-form F =

∑
j<k Fjkdx

j ∧ dxk. Use the inner product
〈Φ,Ψ〉 = −1

2trΦΨ and corresponding norm |Φ|2 = 〈Φ,Φ〉. Show that

∂

∂xj
〈Φ,Ψ〉 = 〈DjΦ,Ψ〉+ 〈Φ, DjΨ〉.

Derive the equations of motion (the Euler-Lagrange equations) for the Yang-Mills-Higgs
energy functional on R3:

V (A,Φ) =
∫

R3

v(A,Φ) d3x v(A,Φ) = |B|2 + |DΦ|2,

where Bi = 1
2εijkFjk. Show that if A,Φ solve the equations Bi = DiΦ, i = 1, 2, 3 then A,Φ

also solve the equations of motion just derived. Assuming still that Bi = DiΦ, i = 1, 2, 3, find
a formula for ∆|Φ|2 , where ∆ =

∑3
j=1

∂2

∂xj2 , in terms of the energy density v(A,Φ).

END OF PAPER
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