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SMOOTH REPRESENTATION

THEORY OF P -ADIC GROUPS

Attempt THREE questions.

There are FOUR questions in total.

The questions carry equal weight.

In the following questions, F always denotes a non-Archimedean local field with ring
of integers o and maximal ideal p = $o. The valuation | · | on F is normalized
by |$| = q−1, where q is the cardinality of the residue field of F . The notation
diag(a1, . . . , an) denotes an n-by-n square matrix (aij) all of whose non-diagonal
entries aij are zero, and aii = ai, i = 1, . . . , n.
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1 (a) Let ι : F → C be an embedding of fields and n > 1 a natural number.
Is the induced homomorphism π : GLn(F ) → GLn(C), (aij) 7→ (ι(aij)), a smooth
representation? Explain your answer.

(b) Let G be an `-group, V = C∞c (G, C) the space of locally constant functions with
compact support on G. Show that the representation ρ : G → GL(V ), (ρ(g)f)(x) = f(xg),
is smooth. Show furthermore that it is admissible if and only if G is compact.

2 For each natural number i > 1 let χi be a complex-valued character of F× which
is trivial on 1 + pi+1 but not trivial on 1 + pi. Let (Vi, χi) be the one-dimensional
representation of F× on C given by the character χi.

(a) Let (V, π) be the representation of F× which is the direct sum of the represen-
tations (Vi, χi), i.e.

V =
⊕
i>1

Vi .

Is V an admissible representation of F×? Explain your answer.

(b) Show that the representation π∗ on the algebraic dual space V ∗ = HomC(V, C)
is naturally isomorphic to ∏

i>1

V ∗i ,

where V ∗i is the one-dimensional representation given by the character χ−1
i .

(c) Show that the smooth dual V ∨ of V , i.e. the subrepresentation of V ∗ consisting
of all smooth vectors, is

V ∨ =
⊕
i>1

V ∗i .

3 Let n > 2 be a natural number, B ⊂ GLn(F ) be the subgroup of upper-triangular
matrices, U ⊂ B the normal subgroup of upper-triangular matrices having 1’s on the
diagonal, and T ⊂ B the subgroup of diagonal matrices. Let (V, ρ) be an admissible
representation of B.

(a) Let δ = diag($−(n−1), $−(n−2), . . . , 1), and K ⊂ B be a compact-open
subgroup of the form T0U0 with compact-open subgroups T0 ⊂ T and U0 ⊂ U . For
i > 0 put Ki = δiKδ−i. Show that the map

V K → V Ki , v 7→ ρ(δi)(v) ,

is an isomorphism. Show further that K is contained in Ki for i � 0. Using this and a
dimension argument, deduce that V K = V Ki for all sufficiently large i.

(b) Use (a) to prove that U acts trivially on V .
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4 Let G = GL2(F ), B ⊂ G the subgroup of upper-triangular matrices, U ⊂ B the
normal subgroup of upper-triangular matrices having 1’s on the diagonal, and T ⊂ B the
subgroup of diagonal matrices. For a character χ of T denote by V (χ) the parabolically
induced representation IndG

B(χ). (As usual, χ is regarded as a character of B via the
canonical homomorphism B → T ).

(a) Prove that for two characters χ, ξ of T the space

HomG(V (χ), V (ξ))

is one-dimensional if and only if ξ = χ or ξ = χwδ−1, and zero otherwise.

Here, χw(diag(t1, t2)) = χ(diag(t2, t1)) and δ(diag(t1, t2)) = |t2/t1|.

You may use without proof that the Jacquet-module V (χ)U of V (χ) sits in an exact
sequence

0 → χwδ−1 → V (χ)U → χ → 0 .

(b) Denote by 1 the trivial character of T , as well as the trivial one-dimensional
representation of G. It is known that the induced representation V (1) sits in an exact
sequence

0 → 1 → V (1) → St → 0 ,

where the representation on the right hand side is the Steinberg representation. Use (a)
to show that this sequence does not split, i.e. V (1) is not isomorphic to

1⊕ St .
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