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SLOW VISCOUS FLOW

Attempt up to THREE questions,
a distinction mark may be obtained by substantially complete answers to TWO questions

There are four questions in total

The questions carry equal weight
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1 Use the Papkovich-Neuber representation of Stokes flow to derive the flow uG due
to a couple G acting on a rigid sphere, radius a centred at x = 0, in an unbounded fluid
with no body forces.

State the Reciprocal Theorem for Stokes flows u1 and u2 with body forces f1 and
f2, respectively.

(a) Apply the Reciprocal Theorem to the unbounded Stokes flow u(x) due to a body
force f(x) acting on the fluid outside a rigid couple-free sphere and the flow uG derived
above. Deduce that the couple-free sphere rotates with angular velocity

Ω =
1

8πµ

∫
r>a

x ∧ f(x)
r3

dV .

(b) Now consider the introduction of a rigid couple-free sphere centred at x = 0 into
an arbitrary unbounded Stokes flow u∞(x) with no body forces. Apply the Reciprocal
Theorem to the perturbation flow and uG to deduce the Faxen formula

Ω =
1
2
ω∞(0) , (∗)

where ω∞(x) = ∇ ∧ u∞, for the rate of rotation Ω of the sphere.

(c) Consider the introduction of a rigid force-free couple-free sphere at x = R into
the flow driven by another rigid sphere rotating with fixed angular velocity Ω0 and with
centre fixed at x = 0; both spheres are of radius a and a � R. Use (∗) to calculate the
leading-order approximation to the rate of rotation of the sphere at R.

If the sphere at R is now acted on by a force F, estimate the magnitude of the force
required to keep the other sphere at x = 0. Deduce that there is another leading-order
contribution, of magnitude O[(F/µa2)(a/R)3], to the rotation rate of the sphere at R.

[You may quote the result that the drag on a translating sphere is 6πµaU . ]

Paper 47



3

2 The concentration C of insoluble surfactant on the surface of an inviscid bubble
immersed in a very viscous fluid obeys the equation

DC

Dt
= −C[∇s·us + (u·n)∇s·n] + Ds∇2

sC , (†)

where n is the unit normal out of the bubble; us = Is·u and ∇s = Is·∇ are the tangential
fluid velocity and tangential gradient operator respectively, where (Is)ij = δij − ninj is
the local projection tensor onto the interface. (Note Is·n = 0.) Describe the physical
interpretation of each of the terms in (†).

Consider the steady concentration C(x) on a spherical bubble of radius a with an
interfacial velocity u = Is(x)·F·x, where F is a constant, symmetric, traceless second-rank
tensor, and x is the position vector from the centre of the bubble. Under what condition
on a, Ds and |F| is it possible to simplify (†) by writing C = C0 + C ′, where |C ′| � C0

and C0 is uniform? Assuming that this condition is satisfied, show that

∇s·us = −3n·F·n and C ′ = An·F·n ,

where the constant of proportionality A should be found.

[You may use the results ∇sn = Is/a and ∇2
s(ninj) = 2(δij − 3ninj)/a2.]

For C ′ � C0 the surface-tension coefficient is given by γ(C) = γ0 − γ1C
′, where

γ0 = γ(C0) and γ1 is a positive constant. Viscous stresses and the variation of surface

tension deform the shape of the drop slightly to r = a

(
1 +

x·D·x
r2

)
, with curvature

κ =
2
a

+
4
a

x·D·x
a2

+ O(|D|2) ,

where D is a constant, symmetric, traceless second-rank tensor, and |D| � 1. Write
down the stress boundary condition for a fluid–fluid interface with surface tension γ and
curvature κ, and show that in this case

[σ·n]+− =
2γ0n

a
+

4γ0

a
(n·D·n)n +

2Aγ1

a

(
Is·F·n− (n·F·n)n

)
.

Assuming that u → E·x as r/a → ∞ and that F = αE and D = βE in a steady
state, explain why the Papkovich-Neuber potentials for the flow can be written in the form

Φ =
Pa3

3
E·∇1

r
χ =

1
2
x·E·x +

Qa5

3
E :∇∇1

r
,

where P and Q are constants. Given that these potentials correspond to

u = (1 + P − 3Q)(n·E·n)x + (1 + 2Q)Is·E·x

σ·n = 2µ(1− 3P + 12Q)(n·E·n)n + 2µ(1 + P − 8Q)Is·E·n
on r = a, show that in steady state the deformation of the bubble is given by

D =
5µEa

γ0

(
2 + M

5 + 2M

)
,

where M = Aγ1/µa.

Show that α → 0 as M →∞ and interpret this result physically.
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3 A long cylindrical tube of radius a and length L is immersed in a large volume of
viscous fluid. The tube is held at a fixed position with its axis vertical, and is open at
both ends so that it is both filled with and surrounded by fluid. A heavy close-fitting
axisymmetric particle falls down the tube at velocity U with the symmetry axis of the
particle coincident with the axis of the tube. The particle has length 2l and radius a−h(z),
−l ≤ z ≤ l, in cylindrical coordinates fixed in the particle, and h � a, l � L.

Explaining any approximations made, show that the flux Q out of the bottom of
the tube is related to the pressure difference ∆P across the particle by

Q =
πa4∆P

8µL
. (1)

Use lubrication theory to show that

∆P

6µ
= 2qI3 − UI2 , (2)

where q = (πa2U −Q)/2πa (3)

and In =
∫ l

−l
h−n dz. By considering the forces acting on a suitable fluid control volume,

show further that the upward force F on the particle is given by

F = πa2∆P + 2πaµ(4UI1 − 6qI2). (4)

Let dimensionless variables be defined by

Q∗ =
Q

πa2U
, ∆P ∗ =

∆Pa

6µU
, q∗ =

q

2aU
, F ∗ =

F

6πµaU
, I∗n = an−1In, δ =

3a

4L
.

Express (1)–(4) in terms of these variables and solve for Q∗, ∆P ∗ and q∗. Hence obtain

F ∗ =
I∗3 + δ( 4

3I∗1 I∗3 − I∗22 )
1 + δI∗3

explaining any approximations made.

Consider the case of a spherical particle with radius a(1− ε) for which

I∗1 =
π

2

√
2ε

ε
, I∗2 =

π

4

√
2ε

ε2
and I∗3 =

3π

16

√
2ε

ε3
.

Deduce that F ∗ takes distinct asymptotic forms when δ � ε5/2, ε5/2 � δ � ε1/2 and
ε1/2 � δ, and calculate the leading-order approximations.

By considering the size of Q∗, q∗, ∆P ∗ and F ∗, describe the dominant flow pattern
and force balance in each of the three regimes.
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4 Consider incompressible viscous flow in a two-dimensional rigid porous medium of
uniform isotropic permeability k, occupying the (x, y) plane, in which a narrow straight
crack of thickness h(x) is embedded along y = 0 (−a ≤ x ≤ a), where a � h � k1/2.
Far from the crack the flow is uniform and the Darcy velocity u = (U, 0). Fluid can enter
and leave the crack through the porous walls, but the walls can be assumed to impose a
no-slip boundary condition on the tangential component of velocity in the crack.

State Darcy’s Law and show that the pore pressure p in the porous medium is
harmonic. Derive the boundary condition

∂

∂x

(
h3

12
∂p

∂x

)
+ k

[
∂p

∂y

]+

−
= 0 on y = 0 (−a ≤ x ≤ a),

where [ ]+− denotes the jump across y = 0, briefly explaining any approximations made.
[Derivation of lubrication theory is not required.] State the other boundary condition
satisfied by p.

Ellipsoidal coordinates are defined by x = a cosh ξ cos η and y = a sinh ξ sin η, where
0 ≤ ξ ≤ ∞ and 0 ≤ η ≤ 2π. Show on a rough sketch the curves ξ = 0, ξ = 1 and η = nπ/4
(n = 0, . . . , 7). Derive the equations

∂

∂η

(
h3

sin η

∂p

∂η

)
+ 12ak

(
∂p

∂ξ

∣∣∣
η

+
∂p

∂ξ

∣∣∣
2π−η

)
= 0 on ξ = 0 (0 ≤ η ≤ π),

(
∂p

∂ξ
,
∂p

∂η

)
∼ µUaeξ

2k
(− cos η, sin η) as ξ →∞.

[You may assume that

∂

∂x
=

a

∆

(
sinh ξ cos η

∂

∂ξ
− cosh ξ sin η

∂

∂η

)
,

∂

∂y
=

a

∆

(
cosh ξ sin η

∂

∂ξ
+ sinh ξ cos η

∂

∂η

)

and ∇2 =
1
∆

(
∂2

∂ξ2
+

∂2

∂η2

)
, where ∆ = a2(sinh2 ξ + sin2 η) .]

For the case h = H0(1− x2/a2)1/6, where H0 is a constant, show that

p = (µUa/k)F (ξ;α) cos η ,

where α = H3
0/24ka and F is to be found. Calculate the flux Q across the mid-point

x = 0 of the crack, and find the limiting forms for α � 1 and α � 1. Give a physical
interpretation of the parameter α and hence of these limiting forms.

Show that the far-field perturbation δp to the pressure caused by the presence of
the crack is given in plane-polar coordinates by

δp ∼ αµU

(α + 1)k
a2 cos θ

r
as r →∞.

[Hint: Evaluate the perturbation in ellipsoidal coordinates first.] Hence calculate the
change in dissipation due to the crack, as given by the line integral −

∫
C

δp Unx ds, where
C is a suitably chosen curve with outward normal n = (nx, ny).
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A porous medium containing a random distribution of cracks, each identical in
size, shape and orientation to the one analysed above, behaves like an anisotropic porous
medium with effective permeability tensor k∗. Assume that the number of cracks per unit
area φ is sufficiently small that they do not interact with each other. Calculate k∗xx by
comparing the dissipation per unit area µU2/k∗xx for flow in a uniform medium with the
average dissipation per unit area in the medium with cracks.
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