PAPER 47

SLOW VISCOUS FLOW

Attempt up to THREE questions,
a distinction mark may be obtained by substantially complete answers to $\boldsymbol{T} \boldsymbol{W O}$ questions
There are four questions in total
The questions carry equal weight

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Use the Papkovich-Neuber representation of Stokes flow to derive the flow \mathbf{u}_{G} due to a couple \mathbf{G} acting on a rigid sphere, radius a centred at $\mathbf{x}=\mathbf{0}$, in an unbounded fluid with no body forces.

State the Reciprocal Theorem for Stokes flows \mathbf{u}_{1} and \mathbf{u}_{2} with body forces \mathbf{f}_{1} and \mathbf{f}_{2}, respectively.
(a) Apply the Reciprocal Theorem to the unbounded Stokes flow $\mathbf{u}(\mathbf{x})$ due to a body force $\mathbf{f}(\mathbf{x})$ acting on the fluid outside a rigid couple-free sphere and the flow \mathbf{u}_{G} derived above. Deduce that the couple-free sphere rotates with angular velocity

$$
\boldsymbol{\Omega}=\frac{1}{8 \pi \mu} \int_{r>a} \frac{\mathbf{x} \wedge \mathbf{f}(\mathbf{x})}{r^{3}} d V
$$

(b) Now consider the introduction of a rigid couple-free sphere centred at $\mathbf{x}=\mathbf{0}$ into an arbitrary unbounded Stokes flow $\mathbf{u}_{\infty}(\mathbf{x})$ with no body forces. Apply the Reciprocal Theorem to the perturbation flow and \mathbf{u}_{G} to deduce the Faxen formula

$$
\begin{equation*}
\boldsymbol{\Omega}=\frac{1}{2} \boldsymbol{\omega}_{\infty}(\mathbf{0}) \tag{*}
\end{equation*}
$$

where $\boldsymbol{\omega}_{\infty}(\mathbf{x})=\boldsymbol{\nabla} \wedge \mathbf{u}_{\infty}$, for the rate of rotation $\boldsymbol{\Omega}$ of the sphere.
(c) Consider the introduction of a rigid force-free couple-free sphere at $\mathbf{x}=\mathbf{R}$ into the flow driven by another rigid sphere rotating with fixed angular velocity $\boldsymbol{\Omega}_{0}$ and with centre fixed at $\mathbf{x}=\mathbf{0}$; both spheres are of radius a and $a \ll R$. Use ($*$) to calculate the leading-order approximation to the rate of rotation of the sphere at \mathbf{R}.

If the sphere at \mathbf{R} is now acted on by a force \mathbf{F}, estimate the magnitude of the force required to keep the other sphere at $\mathbf{x}=\mathbf{0}$. Deduce that there is another leading-order contribution, of magnitude $O\left[\left(F / \mu a^{2}\right)(a / R)^{3}\right]$, to the rotation rate of the sphere at \mathbf{R}.
[You may quote the result that the drag on a translating sphere is $6 \pi \mu a U$.]

2 The concentration C of insoluble surfactant on the surface of an inviscid bubble immersed in a very viscous fluid obeys the equation

$$
\frac{D C}{D t}=-C\left[\nabla_{s} \cdot \mathbf{u}_{s}+(\mathbf{u} \cdot \mathbf{n}) \nabla_{s} \cdot \mathbf{n}\right]+D_{s} \nabla_{s}^{2} C,
$$

where \mathbf{n} is the unit normal out of the bubble; $\mathbf{u}_{s}=\mathbf{I}_{s} \cdot \mathbf{u}$ and $\boldsymbol{\nabla}_{s}=\mathbf{I}_{s} \cdot \boldsymbol{\nabla}$ are the tangential fluid velocity and tangential gradient operator respectively, where $\left(\mathbf{I}_{s}\right)_{i j}=\delta_{i j}-n_{i} n_{j}$ is the local projection tensor onto the interface. (Note $\mathbf{I}_{s} \cdot \mathbf{n}=\mathbf{0}$.) Describe the physical interpretation of each of the terms in (\dagger).

Consider the steady concentration $C(\mathbf{x})$ on a spherical bubble of radius a with an interfacial velocity $\mathbf{u}=\mathbf{I}_{s}(\mathbf{x}) \cdot \mathbf{F} \cdot \mathbf{x}$, where \mathbf{F} is a constant, symmetric, traceless second-rank tensor, and \mathbf{x} is the position vector from the centre of the bubble. Under what condition on a, D_{s} and $|\mathbf{F}|$ is it possible to simplify (\dagger) by writing $C=C_{0}+C^{\prime}$, where $\left|C^{\prime}\right| \ll C_{0}$ and C_{0} is uniform? Assuming that this condition is satisfied, show that

$$
\boldsymbol{\nabla}_{s} \cdot \mathbf{u}_{s}=-3 \mathbf{n} \cdot \mathbf{F} \cdot \mathbf{n} \quad \text { and } \quad C^{\prime}=A \mathbf{n} \cdot \mathbf{F} \cdot \mathbf{n}
$$

where the constant of proportionality A should be found.
[You may use the results $\boldsymbol{\nabla}_{s} \mathbf{n}=\mathbf{I}_{s} /$ a and $\nabla_{s}^{2}\left(n_{i} n_{j}\right)=2\left(\delta_{i j}-3 n_{i} n_{j}\right) / a^{2}$.]
For $C^{\prime} \ll C_{0}$ the surface-tension coefficient is given by $\gamma(C)=\gamma_{0}-\gamma_{1} C^{\prime}$, where $\gamma_{0}=\gamma\left(C_{0}\right)$ and γ_{1} is a positive constant. Viscous stresses and the variation of surface tension deform the shape of the drop slightly to $r=a\left(1+\frac{\mathbf{x} \cdot \mathbf{D} \cdot \mathbf{x}}{r^{2}}\right)$, with curvature

$$
\kappa=\frac{2}{a}+\frac{4}{a} \frac{\mathbf{x} \cdot \mathbf{D} \cdot \mathbf{x}}{a^{2}}+O\left(|\mathbf{D}|^{2}\right),
$$

where \mathbf{D} is a constant, symmetric, traceless second-rank tensor, and $|\mathbf{D}| \ll 1$. Write down the stress boundary condition for a fluid-fluid interface with surface tension γ and curvature κ, and show that in this case

$$
[\boldsymbol{\sigma} \cdot \mathbf{n}]_{-}^{+}=\frac{2 \gamma_{0} \mathbf{n}}{a}+\frac{4 \gamma_{0}}{a}(\mathbf{n} \cdot \mathbf{D} \cdot \mathbf{n}) \mathbf{n}+\frac{2 A \gamma_{1}}{a}\left(\mathbf{I}_{s} \cdot \mathbf{F} \cdot \mathbf{n}-(\mathbf{n} \cdot \mathbf{F} \cdot \mathbf{n}) \mathbf{n}\right) .
$$

Assuming that $\mathbf{u} \rightarrow \mathbf{E} \cdot \mathbf{x}$ as $r / a \rightarrow \infty$ and that $\mathbf{F}=\alpha \mathbf{E}$ and $\mathbf{D}=\beta \mathbf{E}$ in a steady state, explain why the Papkovich-Neuber potentials for the flow can be written in the form

$$
\mathbf{\Phi}=\frac{P a^{3}}{3} \mathbf{E} \cdot \boldsymbol{\nabla} \frac{1}{r} \quad \chi=\frac{1}{2} \mathbf{x} \cdot \mathbf{E} \cdot \mathbf{x}+\frac{Q a^{5}}{3} \mathbf{E}: \nabla \nabla \frac{1}{r},
$$

where P and Q are constants. Given that these potentials correspond to

$$
\begin{gathered}
\mathbf{u}=(1+P-3 Q)(\mathbf{n} \cdot \mathbf{E} \cdot \mathbf{n}) \mathbf{x}+(1+2 Q) \mathbf{I}_{s} \cdot \mathbf{E} \cdot \mathbf{x} \\
\boldsymbol{\sigma} \cdot \mathbf{n}=2 \mu(1-3 P+12 Q)(\mathbf{n} \cdot \mathbf{E} \cdot \mathbf{n}) \mathbf{n}+2 \mu(1+P-8 Q) \mathbf{I}_{s} \cdot \mathbf{E} \cdot \mathbf{n}
\end{gathered}
$$

on $r=a$, show that in steady state the deformation of the bubble is given by

$$
\mathbf{D}=\frac{5 \mu \mathbf{E} a}{\gamma_{0}}\left(\frac{2+M}{5+2 M}\right)
$$

where $M=A \gamma_{1} / \mu a$.
Show that $\alpha \rightarrow 0$ as $M \rightarrow \infty$ and interpret this result physically.

3 A long cylindrical tube of radius a and length L is immersed in a large volume of viscous fluid. The tube is held at a fixed position with its axis vertical, and is open at both ends so that it is both filled with and surrounded by fluid. A heavy close-fitting axisymmetric particle falls down the tube at velocity U with the symmetry axis of the particle coincident with the axis of the tube. The particle has length $2 l$ and radius $a-h(z)$, $-l \leq z \leq l$, in cylindrical coordinates fixed in the particle, and $h \ll a, l \ll L$.

Explaining any approximations made, show that the flux Q out of the bottom of the tube is related to the pressure difference ΔP across the particle by

$$
\begin{equation*}
Q=\frac{\pi a^{4} \Delta P}{8 \mu L} \tag{1}
\end{equation*}
$$

Use lubrication theory to show that

$$
\begin{array}{r}
\frac{\Delta P}{6 \mu}=2 q I_{3}-U I_{2}, \\
\text { where } q=\left(\pi a^{2} U-Q\right) / 2 \pi a \tag{3}
\end{array}
$$

and $I_{n}=\int_{-l}^{l} h^{-n} d z$. By considering the forces acting on a suitable fluid control volume, show further that the upward force F on the particle is given by

$$
\begin{equation*}
F=\pi a^{2} \Delta P+2 \pi a \mu\left(4 U I_{1}-6 q I_{2}\right) \tag{4}
\end{equation*}
$$

Let dimensionless variables be defined by

$$
Q^{*}=\frac{Q}{\pi a^{2} U}, \quad \Delta P^{*}=\frac{\Delta P a}{6 \mu U}, \quad q^{*}=\frac{q}{2 a U}, \quad F^{*}=\frac{F}{6 \pi \mu a U}, \quad I_{n}^{*}=a^{n-1} I_{n}, \quad \delta=\frac{3 a}{4 L} .
$$

Express (1)-(4) in terms of these variables and solve for $Q^{*}, \Delta P^{*}$ and q^{*}. Hence obtain

$$
F^{*}=\frac{I_{3}^{*}+\delta\left(\frac{4}{3} I_{1}^{*} I_{3}^{*}-I_{2}^{* 2}\right)}{1+\delta I_{3}^{*}}
$$

explaining any approximations made.
Consider the case of a spherical particle with radius $a(1-\epsilon)$ for which

$$
I_{1}^{*}=\frac{\pi}{2} \frac{\sqrt{2 \epsilon}}{\epsilon}, \quad I_{2}^{*}=\frac{\pi}{4} \frac{\sqrt{2 \epsilon}}{\epsilon^{2}} \quad \text { and } \quad I_{3}^{*}=\frac{3 \pi}{16} \frac{\sqrt{2 \epsilon}}{\epsilon^{3}} .
$$

Deduce that F^{*} takes distinct asymptotic forms when $\delta \ll \epsilon^{5 / 2}, \epsilon^{5 / 2} \ll \delta \ll \epsilon^{1 / 2}$ and $\epsilon^{1 / 2} \ll \delta$, and calculate the leading-order approximations.

By considering the size of $Q^{*}, q^{*}, \Delta P^{*}$ and F^{*}, describe the dominant flow pattern and force balance in each of the three regimes.

4 Consider incompressible viscous flow in a two-dimensional rigid porous medium of uniform isotropic permeability k, occupying the (x, y) plane, in which a narrow straight crack of thickness $h(x)$ is embedded along $y=0(-a \leq x \leq a)$, where $a \gg h>k^{1 / 2}$. Far from the crack the flow is uniform and the Darcy velocity $\mathbf{u}=(U, 0)$. Fluid can enter and leave the crack through the porous walls, but the walls can be assumed to impose a no-slip boundary condition on the tangential component of velocity in the crack.

State Darcy's Law and show that the pore pressure p in the porous medium is harmonic. Derive the boundary condition

$$
\frac{\partial}{\partial x}\left(\frac{h^{3}}{12} \frac{\partial p}{\partial x}\right)+k\left[\frac{\partial p}{\partial y}\right]_{-}^{+}=0 \quad \text { on } y=0 \quad(-a \leq x \leq a)
$$

where []$_{-}^{+}$denotes the jump across $y=0$, briefly explaining any approximations made. [Derivation of lubrication theory is not required.] State the other boundary condition satisfied by p.

Ellipsoidal coordinates are defined by $x=a \cosh \xi \cos \eta$ and $y=a \sinh \xi \sin \eta$, where $0 \leq \xi \leq \infty$ and $0 \leq \eta \leq 2 \pi$. Show on a rough sketch the curves $\xi=0, \xi=1$ and $\eta=n \pi / 4$ ($n=0, \ldots, 7$). Derive the equations

$$
\begin{gathered}
\frac{\partial}{\partial \eta}\left(\frac{h^{3}}{\sin \eta} \frac{\partial p}{\partial \eta}\right)+12 a k\left(\left.\frac{\partial p}{\partial \xi}\right|_{\eta}+\left.\frac{\partial p}{\partial \xi}\right|_{2 \pi-\eta}\right)=0 \text { on } \xi=0 \quad(0 \leq \eta \leq \pi) \\
\left(\frac{\partial p}{\partial \xi}, \frac{\partial p}{\partial \eta}\right) \sim \frac{\mu U a \mathrm{e}^{\xi}}{2 k}(-\cos \eta, \sin \eta) \text { as } \xi \rightarrow \infty
\end{gathered}
$$

[You may assume that

$$
\frac{\partial}{\partial x}=\frac{a}{\Delta}\left(\sinh \xi \cos \eta \frac{\partial}{\partial \xi}-\cosh \xi \sin \eta \frac{\partial}{\partial \eta}\right), \quad \frac{\partial}{\partial y}=\frac{a}{\Delta}\left(\cosh \xi \sin \eta \frac{\partial}{\partial \xi}+\sinh \xi \cos \eta \frac{\partial}{\partial \eta}\right)
$$

and $\nabla^{2}=\frac{1}{\Delta}\left(\frac{\partial^{2}}{\partial \xi^{2}}+\frac{\partial^{2}}{\partial \eta^{2}}\right)$, where $\left.\Delta=a^{2}\left(\sinh ^{2} \xi+\sin ^{2} \eta\right).\right]$
For the case $h=H_{0}\left(1-x^{2} / a^{2}\right)^{1 / 6}$, where H_{0} is a constant, show that

$$
p=(\mu U a / k) F(\xi ; \alpha) \cos \eta
$$

where $\alpha=H_{0}^{3} / 24 k a$ and F is to be found. Calculate the flux Q across the mid-point $x=0$ of the crack, and find the limiting forms for $\alpha \gg 1$ and $\alpha \ll 1$. Give a physical interpretation of the parameter α and hence of these limiting forms.

Show that the far-field perturbation δp to the pressure caused by the presence of the crack is given in plane-polar coordinates by

$$
\delta p \sim \frac{\alpha \mu U}{(\alpha+1) k} \frac{a^{2} \cos \theta}{r} \text { as } r \rightarrow \infty
$$

[Hint: Evaluate the perturbation in ellipsoidal coordinates first.] Hence calculate the change in dissipation due to the crack, as given by the line integral $-\int_{C} \delta p U n_{x} d s$, where C is a suitably chosen curve with outward normal $\mathbf{n}=\left(n_{x}, n_{y}\right)$.

A porous medium containing a random distribution of cracks, each identical in size, shape and orientation to the one analysed above, behaves like an anisotropic porous medium with effective permeability tensor \mathbf{k}^{*}. Assume that the number of cracks per unit area ϕ is sufficiently small that they do not interact with each other. Calculate $k_{x x}^{*}$ by comparing the dissipation per unit area $\mu U^{2} / k_{x x}^{*}$ for flow in a uniform medium with the average dissipation per unit area in the medium with cracks.

