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1 Suppose that E is a complex Banach space. What is a C0 semigroup (Tt)t>0 acting
on E? What is its infinitesimal generator Z? Explain the sense in which Tt and Z
commute.

What is a contraction semigroup? Suppose that (Tt)t>0 is a contraction semigroup
acting on E. Show that if <(λ) > 0 then there exists Lλ ∈ L(E) such that Lλ(E) ⊆ D(Z)
and (λI − Z)Lλ(f) = f for all f ∈ E.

Show that Z is a closed linear operator on E.

2 What is a dissipative operator?

Suppose that Z is a closed linear operator on a Hilbert space H, with dense domain.
Show that Z is dissipative if and only if <〈Z(f), f〉 6 0 for all f ∈ D(Z). Show that α > 0
is in the spectrum of Z if and only if α is an eigenvalue of Z∗.

Let H = l2(Z+), let Q(f)0 = −f0, let Q(f)n = 22n−1fn−1 − 22nfn for n > 0,
and let D(Q) = {f ∈ H : Q(f) ∈ H}. Show that Q is dissipative. Does Q generate a
contraction semigroup?

3 Let H = L2([0, 1], µ), where µ is Lebesgue measure, and let C1 be the space of
continuous functions on [0, 1] with continuous derivative. If f ∈ H let J(f)(x) =

∫ x

0
f(t) dt.

Show that J ∈ L(H) and that J is one-one.

Let D(A) = J(H), and if f ∈ D(A) let A(f) = iJ−1(f), so that A is a closed
operator. Show that A has a dense domain. Determine the spectrum of A. [You may
assume that the spectrum σ(J) of J is {0}.]

Let H0 = {f : J(f)(1) = 0}, let D(A0) = J(H0), and let A0 be the restriction of A
to A0. Show that A0 is closed and symmetric.

Show that C1 ⊆ D(A∗
0). What are the eigenvalues of A∗

0? What is the spectrum of
A0?

4 Suppose that (Pt)t>0 is a symmetric Feller semigroup, with invariant probability
measure µ.

Show that if f is positive and q > 2 then the joint energy satisfies

Eµ(fq/2) 6
q2

4(q − 1)
Eµ(fq−1, f).

Suppose that µ satisfies a logarithmic Sobolev inequality with constant cLS . Let
q(t) = 1 + e4t/cLS . Show that if f ∈ L2(µ) then Pt(f) ∈ Lq(t)(µ), and ‖Pt(f)‖q(t) 6 ‖f‖2.

Paper 8



3

5 What are the creation and annihilation operators a+ and a− on L2(R, γ1)?

Let (Pt)t>0 be the Ornstein-Uhlenbeck semigroup generated by L = −a+a−.
Calculate the squared gradient operator Γ(f, g) acting on functions f, g in a standard
algebra A, and calculate the joint energy Eγ1(f, g).

Show that γ1 has logarithmic Sobolev constant equal to 2.

[You may assume that if f > 0 then (Pt(g))2 6 Pt(g2/f)Pt(f).]
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