

MATHEMATICAL TRIPOS Part III

Thursday 8 June, 2006 1.30 to 4.30

PAPER 8

SEMIGROUPS OF OPERATORS

Attempt **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1 Suppose that E is a complex Banach space. What is a C_0 semigroup $(T_t)_{t\geq 0}$ acting on E? What is its *infinitesimal generator* Z? Explain the sense in which T_t and Z commute.

What is a contraction semigroup? Suppose that $(T_t)_{t\geq 0}$ is a contraction semigroup acting on E. Show that if $\Re(\lambda) > 0$ then there exists $L_{\lambda} \in L(E)$ such that $L_{\lambda}(E) \subseteq D(Z)$ and $(\lambda I - Z)L_{\lambda}(f) = f$ for all $f \in E$.

Show that Z is a closed linear operator on E.

2 What is a *dissipative* operator?

Suppose that Z is a closed linear operator on a Hilbert space H, with dense domain. Show that Z is dissipative if and only if $\Re(Z(f), f) \leq 0$ for all $f \in D(Z)$. Show that $\alpha > 0$ is in the spectrum of Z if and only if α is an eigenvalue of Z^* .

Let $H = l_2(Z^+)$, let $Q(f)_0 = -f_0$, let $Q(f)_n = 2^{2n-1}f_{n-1} - 2^{2n}f_n$ for n > 0, and let $D(Q) = \{f \in H : Q(f) \in H\}$. Show that Q is dissipative. Does Q generate a contraction semigroup?

3 Let $H = L^2([0,1],\mu)$, where μ is Lebesgue measure, and let C^1 be the space of continuous functions on [0,1] with continuous derivative. If $f \in H$ let $J(f)(x) = \int_0^x f(t) dt$. Show that $J \in L(H)$ and that J is one-one.

Let D(A) = J(H), and if $f \in D(A)$ let $A(f) = iJ^{-1}(f)$, so that A is a closed operator. Show that A has a dense domain. Determine the spectrum of A. [You may assume that the spectrum $\sigma(J)$ of J is $\{0\}$.]

Let $H_0 = \{f : J(f)(1) = 0\}$, let $D(A_0) = J(H_0)$, and let A_0 be the restriction of A to A_0 . Show that A_0 is closed and symmetric.

Show that $C^1 \subseteq D(A_0^*)$. What are the eigenvalues of A_0^* ? What is the spectrum of A_0 ?

4 Suppose that $(P_t)_{t>0}$ is a symmetric Feller semigroup, with invariant probability measure μ .

Show that if f is positive and q > 2 then the joint energy satisfies

$$\mathcal{E}_{\mu}(f^{q/2}) \leqslant \frac{q^2}{4(q-1)} \mathcal{E}_{\mu}(f^{q-1}, f).$$

Suppose that μ satisfies a logarithmic Sobolev inequality with constant c_{LS} . Let $q(t) = 1 + e^{4t/c_{LS}}$. Show that if $f \in L^2(\mu)$ then $P_t(f) \in L^{q(t)}(\mu)$, and $\|P_t(f)\|_{q(t)} \leq \|f\|_2$.

Paper 8

3

5 What are the creation and annihilation operators a^+ and a^- on $L^2(R, \gamma_1)$?

Let $(P_t)_{t\geq 0}$ be the Ornstein-Uhlenbeck semigroup generated by $L = -a^+a^-$. Calculate the squared gradient operator $\Gamma(f,g)$ acting on functions f,g in a standard algebra A, and calculate the joint energy $\mathcal{E}_{\gamma_1}(f,g)$.

Show that γ_1 has logarithmic Sobolev constant equal to 2.

[You may assume that if f > 0 then $(P_t(g))^2 \leq P_t(g^2/f)P_t(f)$.]

END OF PAPER