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1 (a) From the equations for 1-dimensional elastic waves

ρ∂v
∂t = ∂σ

∂x ,
∂σ
∂t = µ ∂v

∂x , with β =
√

µ
ρ ,

show that in uniform media there are two independent solutions (v+, σ+) and (v−, σ−)
satisfying

σ+ = −ρβv+, σ− = ρβv−,

with energy fluxes S = −vσ in the positive and negative x-directions respectively.

(b) Convert the above differential equations for continuous media into the following
equations for φ+ and φ− such that

v = 1√
ρβ

(φ+ + φ−) , σ = −
√
ρβ (φ+ − φ−) :

∂φ+
∂x + 1

β
∂φ+
∂t = 1

2

{
∂
∂x ln (ρβ)

}
φ−,

∂φ−
∂x − 1

β
∂φ−
∂t = 1

2

{
∂
∂x ln (ρβ)

}
φ+.

(c) For time-harmonic waves with angular frequency ω and for a continuously
differentiable monotonic variation in seismic impedance ρβ between xa and xb (> xa)
such that

|ω|
∫ xb

xa

dx
β � both 1 and 1

2

∣∣∣ln(
ρbβb

ρaβa

)∣∣∣ ,
where ρaβa and ρbβb are the impedances at xa and xb, use the differential equations for
φ+ and φ− to find reflection and transmission coefficients Raa, Tab, Tba, Rbb depending
on only ρaβa and ρbβb such that to zeroth-order in frequency(

φ− (xa)
φ+ (xb)

)
=

(
Raa Tab

Tba Rbb

) (
φ+ (xa)
φ− (xb)

)
.

(d) Relate your answer to part (c) to corresponding expressions for reflection and
transmission at a discontinuity in the medium, and show that in this zeroth-order in
frequency limit the total time-averaged energy flux 1

2

[
|φ− (xa)|2 + |φ+ (xb)|2

]
out of the

region is the same as the total time-averaged energy flux 1
2

[
|φ+ (xa)|2 + |φ− (xb)|2

]
into

the region. Use the differential equations for φ+ and φ− to demonstrate that for time-
harmonic waves

d
dx

[
|φ+ (x)|2 − |φ− (x)|2

]
= 0

and, hence, that this equality of energy fluxes into and out of the region is satisfied exactly
at all frequencies.
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2 Either, (a) Describe, defining all required terms, all the steps in deriving the
transport equation for the leading-order P-wave wavefield discontinuity in the form

0 = ∂
∂xq

(
ρα

(
a[k]

)2

nq

)
for a continuous istropic medium, where a[k] is the amplitude of the discontinuity at the
wavefront and k > 2 denotes the order of the time derivative of displacement involved.

Or (b) For the case of a uniform isotropic superficial layer of thickness h over a
uniform isotropic halfspace, derive the dispersion relationship for Love waves

tan
(
|ω|h

√
1

β2
0
− 1

c2
L

)
=

µ

√
1

c2
L

− 1
β2

µ0

√
1

β2
0
− 1

c2
L

using both of the following two approaches:

(i) direct solution of the equations for SH waves, and

(ii) derivation of the condition for constructive interference of SH waves multiply
reflected in the superficial layer, including derivation of the reflection coefficients involved.

Here ω is the angular frequency, cL is the Love wave speed, β0 and β (> β0) are the
S wave speeds in the layer and the halfspace, and µ0 and µ are the corresponding shear
moduli.

(iii) Explain the significance of the frequencies where cL = β.

[Do not attempt both parts of this question.]
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3 In a bounded perfectly elastic domain D, with boundary ∂D, density ρ (x) and
stiffness tensor cijpq (x), consider the Fourier components ûi (x,ω) e−iωt for real-valued
frequencies ω of a real-valued displacement field ui (x, t) associated with real-valued
body forces fi (x, t), with corresponding Fourier components f̂i (x,ω) e−iωt. Each ûi (x,ω)
satisfies

0 = ρω2ûi+
∂σ̂ij

∂xj
+ f̂i where σ̂ij (x, ω) = cijpq

∂
∂xp

ûq (x,ω) .

Also note that ûi (x,−ω) = ûi (x,ω)∗ and f̂i (x,−ω) = f̂i (x,ω)∗.

(a) For any two such wavefields ûa
i (x,ωa) and ûb

i (x,ωb) establish that∫
D

{
−

(
ρω2

aû
a
i + f̂a

i

)
ûb

i + ûa
i

(
ρω2

b û
b
i + f̂ b

i

)}
dV =

∫
∂D

{(
σ̂a

ijnj

)
ûb

i − ûa
i

(
σ̂b

ijnj

)}
dS.

(b) Use this expression to prove that for any single wavefield ûi (x,ω)∫
D

{
f̂∗i v̂i + v̂∗i f̂i

}
dV =

∫
∂D

{
−

(
σ̂∗ijnj

)
v̂i − v̂∗i (σ̂ijnj)

}
dS

where v̂i (x,ω) e−iωt = −iωûi (x,ω) e−iωt is the corresponding Fourier component of the
velocity vi (x, t) = ∂

∂tui (x, t). Interpret this result in terms of the time-averaged work
done by the combined body forces f̂i (x,ω) e−iωt + f̂i (x,−ω) eiωt and the corresponding
outward flow of energy at the boundary ∂D.

(c) For wavefields ûa
i (x,ωa) and ûb

i (x,ωb) for which f̂a
i (x,ωa) = 0 and f̂ b

i (x,ωb) = 0
establish that ∫

D

ρ (ûa
i )∗ ûb

idV = 0

if ω2
a 6= ω2

b and both wavefields satisfy traction-free boundary conditions on ∂D. From
this deduce that there are at most a countably infinite number of frequencies ω such that
ûi (x,ω) can be non-zero when there are no body or boundary forces.

(d) Hence, prove that for all other frequencies the solutions to

0 = ρω2ûi+
∂σ̂ij

∂xj
+ f̂i

with traction boundary conditions on ∂D are unique, and that for traction boundary con-
ditions the complete wavefield ui (x, t) becomes unique when initial conditions ui (x, 0) = 0
and vi (x, 0) = 0 are applied everywhere in the domain D.

Paper 82



5

4 In a uniform isotropic medium consider P-SV waves propagating in the (x, z) plane
with x and t dependence of the form ei(kx−ωt) with ω real and positive, and k also real
and such that |k| < ω

α

(
< ω

β

)
, so that both

kα =
√

ω2

α2 − k2 and kβ =
√

ω2

β2 − k2

are also real-valued.

(a) For waves involving propagation in the positive z-direction, with P and S wave
potentials of the form

φ+ = A+e
i(kx+kαz−ωt), ψ+ = B+e

i(kx+kβz−ωt),

determine the matrix Z+ such that(
σxz

σzz

)
= −Z+

(
vx

vz

)
,

and hence prove that the time-averaged energy flux in the z-direction

1
4

(
vx

vz

)† (
Z+ + Z†+

) (
vx

vz

) (
= 1

2Re {−v∗xσxz − v∗zσzz}
)

is ρω
2(k2+kαkβ)

(
kα |vx|2 + kβ |vz|2

)
(> 0) ,

where † denotes the transpose of the complex conjugate.

(b) Similarly, for waves involving propagation in the negative z-direction, with P
and S wave potentials of the form

φ− = A−e
i(kx−kαz−ωt), ψ− = B−e

i(kx−kβz−ωt),

determine the corresponding matrix Z−, establishing that Z− = −Z†+, and prove that the
time-averaged energy flux in the z-direction is

ρω
2(k2+kαkβ)

(
−kα |vx|2 − kβ |vz|2

)
(< 0) .

(c) For a mixture of waves involving propagation in both the positive and negative
z-directions, with(

vx

vz

)
=

(
v+

x

v+
z

)
+

(
v−x
v−z

)
and

(
σxz

σzz

)
= −Z+

(
v+

x

v+
z

)
− Z−

(
v−x
v−z

)
,

explain how v+
x , v+

z , v−x , v−z can be determined from vx, vz, σxz, σzz and obtain an explicit
expression for (Z+ − Z−)−1. Establish that in this case the time-averaged energy flux in
the z-direction is

ρω
2(k2+kαkβ)

(
kα

[∣∣v+
x

∣∣2 − ∣∣v−x ∣∣2] + kβ

[∣∣v+
z

∣∣2 − ∣∣v−z ∣∣2]) ,
and that this expression can be rewritten as

ρω3

2

(
kα

[
|φ+|2 − |φ−|2

]
+ kβ

[
|ψ+|2 − |ψ−|2

])
.
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