

MATHEMATICAL TRIPOS Part III

Tuesday 5 June 2007 9.00 to 11.00

PAPER 32

ROUGH PATH THEORY AND APPLICATIONS

Attempt **THREE** questions.

There are **FOUR** questions in total.

The questions carry equal weight.

STATIONERY REQUIREMENTS

 $\begin{array}{c} \textbf{SPECIAL} \ \textbf{REQUIREMENTS} \\ \textit{None} \end{array}$

Cover sheet Treasury Tag Script paper

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

- 1 (i) Define $(G^N(\mathbb{R}^d), \otimes, ^{-1}, e)$, the free step-N nilpotent group over \mathbb{R}^d , and give the definition of the Carnot–Carathéodory d distance on $G^N(\mathbb{R}^d)$. What is a weak geometric p-rough path?
- (ii) How can the step-2 nilpotent group over \mathbb{R}^2 be identified with the 3-dimensional Heisenberg group \mathbb{H} ?
- (iii) Since $\mathbb{H} \cong \mathbb{R}^3$ we can equip \mathbb{H} with the *Euclidean* distance inherited from \mathbb{R}^3 . Is a Lipschitz path in \mathbb{H} relative to this Euclidean distance automatically a Lipschitz path relative to the Carnot–Carathéodory distance on \mathbb{H} ?
- Let x be a Lipschitz continuous \mathbb{R}^d -valued path. Define $S_N(x)_{s,t}$, the step-Nsignature of the path segment $x|_{[s,t]}$, as an element in a suitable tensor algebra over \mathbb{R}^d . State and prove an algebraic relation between the step-N signature of the path segment $x|_{[s,t]}$ and the path segment $x|_{[t,u]}$ respectively. Show that the signature is invariant under reparametrisation of the path. More precisely, given $\psi:[0,1]\to[0,1]$ strictly increasing and continuously differentiable, show that

$$S_N(x)_{0,1} = S_N(x \circ \psi)_{0,1}$$
.

- 3 Nested piecewise linear approximations to d-dimensional Brownian motion and their canonical area converge to Brownian motion and Lévy area in a rough path sense. Give a precise statement of this and sketch a proof with particular focus on martingale arguments.
- 4 Write an essay on the rough path proof of the Stroock-Varadhan support theorem. In particular, explain how the universal limit theorem is used.

END OF PAPER