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1 (i) Let x be a Lipschitz continuous Rd-valued path. Define SN (x)s,t, the step-
Nsignature of the path segment x|[s,t]. Show that the path t 7→ SN (x)0,t solves a controlled
ordinary differential equation driven by x.

(ii) What is meant by pathlevel solution to a Rough Differential Equation (RDE)?
Use Davie’s lemma to prove existence of a pathlevel RDE solution.

2 Define (GN
(
Rd

)
,⊗,−1, e), the free step-N nilpotent group over Rd. State Chow’s

Theorem and prove it in the special case of N = 2 and d = 2. [Hint: draw a picture.]
A path with values in the step−2 nilpotent group over R2 is given by

yt = exp
((

0
0

)
+

(
0 t
−t 0

))
.

Compute y−1
s ⊗ yt and discuss the Hölder regularity of y with respect to the Carnot-

Caratheodory metric. For what p is y a weak geometric p-rough path?

3 (i) Let d > 2 be an integer. In the context of a d-dimensional standard Brownian
motion B =

(
B1, B2, . . . , Bd

)
, define Enhanced Brownian Motion. Show that there

is a modification of Enhanced Brownian Motion, denoted by B, so that for any fixed
α ∈ [0, 1/2),

‖B‖α−Hölder;[0,1] < ∞ a.s.

[Integrability properties of Lévy’s area and scaling properties of Enhanced Brownian Motion
may be assumed.]

(ii) Now consider the case of a 2-dimensional standard Brownian motion B = (β, β̃).
Let B(n) =

(
β (n) , β̃ (n)

)
be the dyadic piecewise linear approximation of level n to B,

that is, B (n)k/2n equals Bk/2n for all k = 0, . . . , 2n and B (n) is affine linear on each
interval [(k − 1) /2n, k/2n] , k = 1, . . . , 2n. You may assume without proof that (a) for all
t ∈ [0, 1],

B (n)t = E
[
Bt|Bi/2n ; i = 0, . . . , 2n

]∫ t

0

β (n) dβ̃ (n) = E
[∫ t

0

βdβ̃|Bi/2n ; i = 0, . . . , 2n

]
.

and (b) the r.v. ‖B‖α−Hölder;[0,1] has finite moments of all orders. Explain how martingale
arguments can be used to prove that for all t ∈ [0, 1], B (n)t ≡ S2 (B (n))t → Bt a.s. and
supn ‖B (n)‖α−Hölder < ∞ a.s..
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4 (i) Define the support of a Borel probability measure on a Polish space.

(ii) State and prove the Stroock-Varadhan support theorem in uniform topology
for solutions of the Stratonovich stochastic differential equation dY = V1 (Y ) ◦ dB1 +
. . . + Vd (Y ) ◦ dBd, Y0 = y0 ∈ Re. Here B denotes a standard Brownian motion on Rd

and V1, . . . , Vd are bounded vector fields on Re with bounded derivatives of all orders.
[You may assume that Y is given by a Rough Differential Equation driven by Enhanced
Brownian Motion B, along the vector fields V1, . . . , Vd and started from y0 at time 0.
You may use the Universal Limit Theorem and results on Enhanced Brownian motion B
without proof.]

END OF PAPER
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