

MATHEMATICAL TRIPOS Part III

Monday 5 June, 2006 1.30 to 3.30

PAPER 31

ROUGH PATH THEORY AND APPLICATIONS

Attempt **THREE** questions. There are **FOUR** questions in total. The question carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1 (i) Let x be a Lipschitz continuous \mathbb{R}^d -valued path. Define $S_N(x)_{s,t}$, the step-N signature of the path segment $x|_{[s,t]}$. Show that the path $t \mapsto S_N(x)_{0,t}$ solves a controlled ordinary differential equation driven by x.

(ii) What is meant by *pathlevel solution to a Rough Differential Equation (RDE)?* Use Davie's lemma to prove existence of a pathlevel RDE solution.

2 Define $(G^N(\mathbb{R}^d), \otimes, {}^{-1}, e)$, the free step-*N* nilpotent group over \mathbb{R}^d . State Chow's Theorem and prove it in the special case of N = 2 and d = 2. [Hint: draw a picture.] A path with values in the step-2 nilpotent group over \mathbb{R}^2 is given by

$$\mathbf{y}_t = \exp\left(\begin{pmatrix} 0\\0 \end{pmatrix} + \begin{pmatrix} 0&t\\-t&0 \end{pmatrix}\right).$$

Compute $\mathbf{y}_s^{-1} \otimes \mathbf{y}_t$ and discuss the Hölder regularity of \mathbf{y} with respect to the Carnot-Caratheodory metric. For what p is \mathbf{y} a weak geometric p-rough path?

3 (i) Let $d \ge 2$ be an integer. In the context of a *d*-dimensional standard Brownian motion $B = (B^1, B^2, \ldots, B^d)$, define *Enhanced Brownian Motion*. Show that there is a modification of Enhanced Brownian Motion, denoted by **B**, so that for any fixed $\alpha \in [0, 1/2)$,

$$\|\mathbf{B}\|_{\alpha-\text{H\"older};[0,1]} < \infty \text{ a.s.}$$

[Integrability properties of Lévy's area and scaling properties of Enhanced Brownian Motion may be assumed.]

(ii) Now consider the case of a 2-dimensional standard Brownian motion $B = (\beta, \hat{\beta})$. Let $B(n) = (\beta(n), \tilde{\beta}(n))$ be the dyadic piecewise linear approximation of level n to B, that is, $B(n)_{k/2^n}$ equals $B_{k/2^n}$ for all $k = 0, \ldots, 2^n$ and B(n) is affine linear on each interval $[(k-1)/2^n, k/2^n], k = 1, \ldots, 2^n$. You may assume without proof that (a) for all $t \in [0, 1]$,

$$B(n)_{t} = \mathbb{E}\left[B_{t}|B_{i/2^{n}}; i = 0, \dots, 2^{n}\right]$$
$$\int_{0}^{t} \beta(n) d\tilde{\beta}(n) = \mathbb{E}\left[\int_{0}^{t} \beta d\tilde{\beta}|B_{i/2^{n}}; i = 0, \dots, 2^{n}\right].$$

and (b) the r.v. $\|\mathbf{B}\|_{\alpha-\text{H\"older};[0,1]}$ has finite moments of all orders. Explain how martingale arguments can be used to prove that for all $t \in [0,1]$, $\mathbf{B}(n)_t \equiv S_2(B(n))_t \to \mathbf{B}_t$ a.s. and $\sup_n \|\mathbf{B}(n)\|_{\alpha-\text{H\"older}} < \infty$ a.s..

Paper 31

3

4 (i) Define the support of a Borel probability measure on a Polish space.

(ii) State and prove the Stroock-Varadhan support theorem in uniform topology for solutions of the Stratonovich stochastic differential equation $dY = V_1(Y) \circ dB^1 + \dots + V_d(Y) \circ dB^d$, $Y_0 = y_0 \in \mathbb{R}^e$. Here *B* denotes a standard Brownian motion on \mathbb{R}^d and V_1, \dots, V_d are bounded vector fields on \mathbb{R}^e with bounded derivatives of all orders. [You may assume that *Y* is given by a Rough Differential Equation driven by Enhanced Brownian Motion **B**, along the vector fields V_1, \dots, V_d and started from y_0 at time 0. You may use the Universal Limit Theorem and results on Enhanced Brownian motion **B** without proof.]

END OF PAPER

Paper 31