MATHEMATICAL TRIPOS Part III

Thursday 7 June 2007 1.30 to 4.30

PAPER 11

RIEMANN SURFACES AND DISCRETE GROUPS

Attempt **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1 Let D be a proper subdomain of the complex plane. For each point $z_o \in D$ set

$$\delta(z_o) = \inf\{|z_o - w| : w \in \mathbb{C} \setminus D\}.$$

Show that there is a point $w_o \in \mathbb{C} \setminus D$ with $\delta(z_o) = |z_o - w_o|$.

The function

$$f(z) = \frac{z - z_o}{z - w_o}$$

is holomorphic. The principal branch of its logarithm is given by the convergent power series

$$\log f(z) = \sum_{k=1}^{\infty} -\frac{1}{k} \left(\frac{z_o - w_o}{z - w_o}\right)^k$$

on the set $\{z : |z - w_o| > \delta(z_o)\}$. Does it converge uniformly on this set? Does it converge locally uniformly?

For any $\epsilon_o > 0$, show that there is a natural number K for which the function

$$E_o(z) = \left(\frac{z - z_o}{z - w_o}\right) \exp\left[\sum_{k=1}^K \frac{1}{k} \left(\frac{z_o - w_o}{z - w_o}\right)^k\right]$$

is holomorphic on D, has a simple zero at z_o and satisfies

$$|\log E_o(z)| < \epsilon_o$$
 for $|z - w_o| > 2\delta(z_o)$.

Deduce that, for any sequence (z_n) of distinct points in D that satisfies $\delta(z_n) \to 0$ as $n \to \infty$, there is a holomorphic function $f: D \to \mathbb{C}$ that has simple zeros at each z_n and no other zeros.

Explain why this implies that every meromorphic function on D can be written as the quotient of two holomorphic functions on D.

2 Let $u : \overline{\mathbb{D}} \to \mathbb{R}$ be a continuous function on the closed unit disc $\overline{\mathbb{D}}$ which is harmonic on the open unit disc. Show that the value of u at any point $z \in \mathbb{D}$ is given by a Poisson integral of the boundary values u(w) for $w \in \partial \mathbb{D}$.

A continuous function $u: \Omega \to \mathbb{R}$ on a domain $\Omega \subset \mathbb{C}$ has the mean value property if, for each $z \in \Omega$ there exists r(z) > 0 with $\{w: |w-z| < r(z)\} \subset \Omega$ and

$$u(z) = \int_0^{2\pi} u(z + re^{i\theta}) \frac{d\theta}{2\pi}$$

for 0 < r < r(z). Prove that, if such a function has a local maximum at $z \in \Omega$, then it is constant on a neighbourhood of z. Prove that u has the mean value property if, and only if, u is harmonic.

3 Let (z_n) be a sequence of points in the unit disc \mathbb{D} and ρ the hyperbolic metric on \mathbb{D} . Prove that the following conditions are equivalent.

- (a) For a point $w \in \mathbb{D}$ the sum $\sum \exp -\rho(w, z_n)$ converges.
- (b) There is a bounded holomorphic function $f : \mathbb{D} \to \mathbb{D}$ with f having a zero of order k at any point $z \in \mathbb{D}$ if and only if z occurs exactly k times in the sequence (z_n) .

Let G be a discrete subgroup of the group $M\"{o}b(\mathbb{D})$ of all Möbius transformations from the disc onto itself. Let B be a Blaschke product for the sequence of points in an orbit $G(0) = \{T(0) : T \in G\}$. Show that there is a group homomorphism

$$\chi: G \to \mathbb{T} = \{ z \in \mathbb{C} : |z| = 1 \}$$

with

$$B(T(z)) = \chi(T)B(z)$$
 for all $z \in \mathbb{D}$ and $T \in G$

4 Let G be the set of all Möbius transformations of the form

$$z\mapsto \frac{az+b}{\overline{b}z+\overline{a}}$$

where $|a|^2 - |b|^2 = 1$ and $a, b \in \mathbb{Z}[i] = \{m + ni : m, n \in \mathbb{Z}\}$. Explain briefly why G acts discontinuously on the unit disc.

Let A and B be the Möbius transformations

$$A: z \mapsto \frac{(1-i)z+i}{-iz+(1+i)} \qquad ; \qquad B: z \mapsto \frac{(1-i)z-i}{iz+(1+i)}$$

and let H be the group they generate. Show that this is a discrete group. Find the fixed points of A and B and show that both A and B are parabolic transformations.

Let ρ denote the hyperbolic metric on \mathbb{D} . Show that the set

$$\{z \in \mathbb{D} : \rho(z,0) \leq \rho(z,A^k(0)) \text{ for } k \in \mathbb{Z}\}$$

is a subset of \mathbb{D} bounded by two hyperbolic geodesics. Draw these geodesics on a diagram. What is the corresponding result for B?

Let $H(z_o)$ be the orbit of any point $z_o \in \mathbb{D}$. Show that there is an element T of H with $\rho(0, T(z_o))$ minimal and that the point $T(z_o)$ lies in a region of \mathbb{D} bounded by four hyperbolic geodesics. Identify the quotient \mathbb{D}/H up to homeomorphism.

5 Define a *Perron family* of continuous subharmonic functions on a Riemann surface R. Prove that the supremum of such a Perron family is either $+\infty$ on all of R or else a harmonic function on R. Give examples to show that both cases arise.

Let $u: \mathbb{D} \to \mathbb{R}$ be continuous and subharmonic on the unit disc \mathbb{D} . Show that the least harmonic majorant of u is given by

$$\lim_{r \to 1-} \int_0^{2\pi} u(re^{i\theta}) \frac{r^2 - |z|^2}{|z - re^{i\theta}|^2} \frac{d\theta}{2\pi} = \sup_{r < 1} \int_0^{2\pi} u(re^{i\theta}) \frac{r^2 - |z|^2}{|z - re^{i\theta}|^2} \frac{d\theta}{2\pi}.$$

6 What does it mean to say that a simply-connected Riemann surface is *hyperbolic*. Give an example of such a surface and prove that it is indeed hyperbolic.

Write an essay describing the proof that a simply-connected, hyperbolic, Riemann surface is conformally equivalent to the unit disc.

END OF PAPER