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1 Let D be a proper subdomain of the complex plane. For each point zo ∈ D set

δ(zo) = inf{|zo − w| : w ∈ C \D} .

Show that there is a point wo ∈ C \D with δ(zo) = |zo − wo|.

The function
f(z) =

z − zo

z − wo

is holomorphic. The principal branch of its logarithm is given by the convergent power
series

log f(z) =
∞∑

k=1

−1
k

(
zo − wo

z − wo

)k

on the set {z : |z−wo| > δ(zo)}. Does it converge uniformly on this set? Does it converge
locally uniformly?

For any εo > 0, show that there is a natural number K for which the function

Eo(z) =
(

z − zo

z − wo

)
exp

[
K∑

k=1

1
k

(
zo − wo

z − wo

)k
]

is holomorphic on D, has a simple zero at zo and satisfies

| log Eo(z)| < εo for |z − wo| > 2δ(zo) .

Deduce that, for any sequence (zn) of distinct points in D that satisfies δ(zn) → 0
as n → ∞, there is a holomorphic function f : D → C that has simple zeros at each zn

and no other zeros.

Explain why this implies that every meromorphic function on D can be written as
the quotient of two holomorphic functions on D.

2 Let u : D → R be a continuous function on the closed unit disc D which is harmonic
on the open unit disc. Show that the value of u at any point z ∈ D is given by a Poisson
integral of the boundary values u(w) for w ∈ ∂D.

A continuous function u : Ω → R on a domain Ω ⊂ C has the mean value property
if, for each z ∈ Ω there exists r(z) > 0 with {w : |w − z| < r(z)} ⊂ Ω and

u(z) =
∫ 2π

0

u(z + reiθ)
dθ

2π

for 0 < r < r(z). Prove that, if such a function has a local maximum at z ∈ Ω, then it is
constant on a neighbourhood of z. Prove that u has the mean value property if, and only
if, u is harmonic.
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3 Let (zn) be a sequence of points in the unit disc D and ρ the hyperbolic metric on
D. Prove that the following conditions are equivalent.

(a) For a point w ∈ D the sum
∑

exp−ρ(w, zn) converges.

(b) There is a bounded holomorphic function f : D → D with f having a zero of order
k at any point z ∈ D if and only if z occurs exactly k times in the sequence (zn).

Let G be a discrete subgroup of the group Möb(D) of all Möbius transformations
from the disc onto itself. Let B be a Blaschke product for the sequence of points in an
orbit G(0) = {T (0) : T ∈ G}. Show that there is a group homomorphism

χ : G → T = {z ∈ C : |z| = 1}

with
B(T (z)) = χ(T )B(z) for all z ∈ D and T ∈ G .

4 Let G be the set of all Möbius transformations of the form

z 7→ az + b

bz + a

where |a|2 − |b|2 = 1 and a, b ∈ Z[i] = {m + ni : m,n ∈ Z}. Explain briefly why G acts
discontinuously on the unit disc.

Let A and B be the Möbius transformations

A : z 7→ (1− i)z + i

−iz + (1 + i)
; B : z 7→ (1− i)z − i

iz + (1 + i)

and let H be the group they generate. Show that this is a discrete group. Find the fixed
points of A and B and show that both A and B are parabolic transformations.

Let ρ denote the hyperbolic metric on D. Show that the set

{z ∈ D : ρ(z, 0) 6 ρ(z,Ak(0)) for k ∈ Z}

is a subset of D bounded by two hyperbolic geodesics. Draw these geodesics on a diagram.
What is the corresponding result for B?

Let H(zo) be the orbit of any point zo ∈ D. Show that there is an element T of H
with ρ(0, T (zo)) minimal and that the point T (zo) lies in a region of D bounded by four
hyperbolic geodesics. Identify the quotient D/H up to homeomorphism.
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5 Define a Perron family of continuous subharmonic functions on a Riemann surface
R. Prove that the supremum of such a Perron family is either +∞ on all of R or else a
harmonic function on R. Give examples to show that both cases arise.

Let u : D → R be continuous and subharmonic on the unit disc D. Show that the
least harmonic majorant of u is given by

lim
r→1−

∫ 2π

0

u(reiθ)
r2 − |z|2

|z − reiθ|2
dθ

2π
= sup

r<1

∫ 2π

0

u(reiθ)
r2 − |z|2

|z − reiθ|2
dθ

2π
.

6 What does it mean to say that a simply-connected Riemann surface is hyperbolic.
Give an example of such a surface and prove that it is indeed hyperbolic.

Write an essay describing the proof that a simply-connected, hyperbolic, Riemann
surface is conformally equivalent to the unit disc.

END OF PAPER
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