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1 (a) Define SLq(2) and give its coalgebra and algebra structure explicitly.

(b) Define the coaction of SLq(2) on kq[x, y] and compute explicitly 4x2y.

(c) Explain what is meant by an R-point of kq[x, y]. What are the C points of
kq[x, y]? If R is the algebra Mn(C) of n by n matrices, and α is an R-point of kq[x, y],
show that α determines a decomposition

Cn = Vx ⊕ Vy ⊕ U

where Vx is the subspace on which α(x) has non-zero eigenvalues, Vy is the subspace on
which α(y) has non-zero eigenvalues, and U is the subspace on which both α(x) and α(y)
act nilpotently. [ Hint: In particular, you must show α(y) acts nilpotently on Vx.] You
may assume q is not a root of unity.

2 (a) Let V be a 3 dimensional simple Uq module where q is not a root of unity. Show
that there is a basis of V with respect to which K, E, F are represented by the following
matrices:

E = ε

 0 [2] 0
0 0 1
0 0 0


F =

 0 0 0
[2] 0 0
0 1 0


K = ε

 q2 0 0
0 1 0
0 0 q−2


where ε = ±1.

(b) Decompose V1,1⊗ V1,2 into its simple Uq modules, indicating which are highest
weight vectors, and giving bases explicitly. You may use a different basis from that in part
(a) if you prefer.
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3 (a) Explain what is meant by a cobraided bialgebra.

(b) Describe the Faddeev-Reshitikin-Takhtadjian construction. If V =< e1, e2 >,
and C : V ⊗ V → V ⊗ V is given by

C =


q

1
2 0 0 0

0 0 q−
1
2 0

0 q−
1
2 q−

1
2 (q − q−1) 0

0 0 0 q
1
2


define an isomorphism from Mq(2) to the FRT algebra, and check ba = qab.

(c) Give the cobraiding r explicitly.

(d) Calculate explicitly r(a2 ⊗ b).

4 (a) Define the action of Uq on kq[x, y] , and show explicitly that the Serre relations
hold.

(b) Show that the space of homogeneous polynomials of degree n, kn
q [x, y] is a

submodule of kq[x, y].

(c) Now suppose that q3 = 1. Show that Uq has no simple submodule of dimension
greater than 3.

(d) What are the simple submodules of k3
q [x, y]? Can k3

q [x, y] be expressed as a
direct sum of simple submodules? Explain.
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5 (a) If A,B are algebras, define what is meant by a measuring coalgebra for the pair
A,B. Define (by stating its universal property) what is meant by the universal measuring
coalgebra P (A,B).

(b) Let Cq be the comodule given by

Cq =< K,K−1, I, E, F >

with K, K−1, and I all group-like, and comultiplication of E,F given by

4F = F ⊗ I + K−1 ⊗ F ,

4E = E ⊗K + I ⊗ E .

If
p : Cq −→ End(kq[x, y])

where
p(K)(x) = qx, p(K)(y) = q−1y

p(K−1)(x) = q−1x, p(K−1)(y) = qy

p(E)(y) = x, p(E)(x) = 0 ,

p(F )(x) = y, p(F )(y) = 0 ,

and p is a measuring map, show that

p(E)xrxs = [s]xr+1ys−1 .

(c) Outline the proof that there is a bialgebra homomorphism

ρ : Uq −→ P (kq[x, y], kq[x, y]) .
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6 (a) Define the tangle category.

(b) Draw representatives of the classes:

• (↑ ∪ ↓ ←−∩X−)

• (∪) ◦ (↓ ∩ ↑) ◦ (X+ ↑↑)

(c) Write the tangle represented by
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in terms of elementary tangles

↓, ↑,∩,←−∩ ,∪,←−∪ , X+, X− .
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(d) Let V =< u, v > and V ∗ =< x, y >. Let c be the matrix

c =


q−1 0 0 0
0 0 q−2 0
0 q−2 q−2 (q − q−1) 0
0 0 0 q−1


with respect to the basis u ⊗ u, u ⊗ v, v ⊗ u, v ⊗ v of V ⊗ V . Suppose that under a
functor F elementary tangles are represented by maps as follows

...........
...........
...........
...........
.........................
................. ...........
...........
...........
...........
............................................................................. ........

.........
....................................................

= 1 7→ ( x⊗ u + y ⊗ v ) ,

............................................................
.........
................................................................................

...........
...........

...........
..........................................
...........

...........
...........

...........
........

=

x⊗ u 7→ A

y ⊗ v 7→ B

x⊗ v 7→ 0
y ⊗ u 7→ 0 ,

X+ = c .

Compute A and B, and verify that the quantum dimension of V is [2]. [Hint:
consider an identity involving these tangles.)

END OF PAPER
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