MATHEMATICAL TRIPOS Part III

Tuesday 12 June 2007 9.00 to 12.00

PAPER 2

QUANTUM GROUPS

Attempt **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1 (a) Define $SL_q(2)$ and give its coalgebra and algebra structure explicitly.

(b) Define the coaction of $SL_q(2)$ on $k_q[x, y]$ and compute explicitly $\Delta x^2 y$.

(c) Explain what is meant by an *R*-point of $k_q[x, y]$. What are the **C** points of $k_q[x, y]$? If *R* is the algebra $M_n(\mathbf{C})$ of *n* by *n* matrices, and α is an *R*-point of $k_q[x, y]$, show that α determines a decomposition

$$\mathbf{C}^n = V_x \oplus V_y \oplus U$$

where V_x is the subspace on which $\alpha(x)$ has non-zero eigenvalues, V_y is the subspace on which $\alpha(y)$ has non-zero eigenvalues, and U is the subspace on which both $\alpha(x)$ and $\alpha(y)$ act nilpotently. [*Hint: In particular, you must show* $\alpha(y)$ *acts nilpotently on* V_x .] You may assume q is not a root of unity.

2 (a) Let V be a 3 dimensional simple U_q module where q is not a root of unity. Show that there is a basis of V with respect to which K, E, F are represented by the following matrices:

$$E = \epsilon \begin{pmatrix} 0 & [2] & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$F = \begin{pmatrix} 0 & 0 & 0 \\ [2] & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
$$K = \epsilon \begin{pmatrix} q^2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & q^{-2} \end{pmatrix}$$

where $\epsilon = \pm 1$.

(b) Decompose $V_{1,1} \otimes V_{1,2}$ into its simple U_q modules, indicating which are highest weight vectors, and giving bases explicitly. You may use a different basis from that in part (a) if you prefer.

3 (a) Explain what is meant by a cobraided bialgebra.

(b) Describe the Faddeev-Reshitikin-Takhtadjian construction. If $V = \langle e_1, e_2 \rangle$, and $C: V \otimes V \to V \otimes V$ is given by

$$C = \begin{pmatrix} q^{\frac{1}{2}} & 0 & 0 & 0\\ 0 & 0 & q^{-\frac{1}{2}} & 0\\ 0 & q^{-\frac{1}{2}} & q^{-\frac{1}{2}}(q-q^{-1}) & 0\\ 0 & 0 & 0 & q^{\frac{1}{2}} \end{pmatrix}$$

define an isomorphism from $M_q(2)$ to the FRT algebra, and check ba = qab.

(c) Give the cobraiding r explicitly.

(d) Calculate explicitly $r(a^2 \otimes b)$.

4 (a) Define the action of U_q on $k_q[x, y]$, and show explicitly that the Serre relations hold.

(b) Show that the space of homogeneous polynomials of degree $n, k_q^n[x, y]$ is a submodule of $k_q[x, y]$.

(c) Now suppose that $q^3 = 1$. Show that U_q has no simple submodule of dimension greater than 3.

(d) What are the simple submodules of $k_q^3[x, y]$? Can $k_q^3[x, y]$ be expressed as a direct sum of simple submodules? Explain.

3

5 (a) If A, B are algebras, define what is meant by a measuring coalgebra for the pair A, B. Define (by stating its universal property) what is meant by the universal measuring coalgebra P(A, B).

(b) Let C_q be the comodule given by

$$C_q = \langle K, K^{-1}, I, E, F \rangle$$

with K, K^{-1} , and I all group-like, and comultiplication of E, F given by

$$\Delta F = F \otimes I + K^{-1} \otimes F ,$$
$$\Delta E = E \otimes K + I \otimes E .$$

If

$$p: C_q \longrightarrow End(k_q[x, y])$$

where

$$\begin{split} p(K)(x) &= qx, \quad p(K)(y) = q^{-1}y \\ p(K^{-1})(x) &= q^{-1}x, \quad p(K^{-1})(y) = qy \\ p(E)(y) &= x, \ p(E)(x) = 0 \,, \\ p(F)(x) &= y, \quad p(F)(y) = 0 \,, \end{split}$$

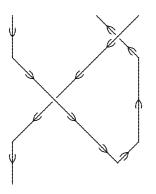
and p is a measuring map, show that

$$p(E)x^{r}x^{s} = [s]x^{r+1}y^{s-1}$$

(c) Outline the proof that there is a bialgebra homomorphism

$$\rho: U_q \longrightarrow P(k_q[x, y], k_q[x, y]).$$

- **6** (a) Define the tangle category.
 - (b) Draw representatives of the classes:
 - $(\uparrow \cup \downarrow \overleftarrow{\cap} X_{-})$
 - $(\cup) \circ (\downarrow \cap \uparrow) \circ (X_+ \uparrow \uparrow)$
 - (c) Write the tangle represented by



in terms of elementary tangles

 $\downarrow,\uparrow,\cap,\overleftarrow{\sqcap},\cup,\overleftarrow{\cup},X_+,X_-.$

(d) Let $V = \langle u, v \rangle$ and $V^* = \langle x, y \rangle$. Let c be the matrix

$$c = \begin{pmatrix} q^{-1} & 0 & 0 & 0\\ 0 & 0 & q^{-2} & 0\\ 0 & q^{-2} & q^{-2}(q-q^{-1}) & 0\\ 0 & 0 & 0 & q^{-1} \end{pmatrix}$$

with respect to the basis $u \otimes u$, $u \otimes v$, $v \otimes u$, $v \otimes v$ of $V \otimes V$. Suppose that under a functor \mathcal{F} elementary tangles are represented by maps as follows

$$= 1 \mapsto (x \otimes u + y \otimes v),$$

$$\begin{array}{ccc} & x \otimes u \mapsto A \\ & y \otimes v \mapsto B \\ & x \otimes v \mapsto 0 \\ & y \otimes u \mapsto 0 \end{array}, \end{array}$$

$$X_+ = c.$$

Compute A and B, and verify that the quantum dimension of V is [2]. [Hint: consider an identity involving these tangles.)

END OF PAPER