PAPER 12

RANDOM GRAPHS

Attempt TWO questions
There are four questions in total.
The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (i) Let $k \geq 2$ be fixed and $\omega(n) \rightarrow \infty$. Show that if

$$
\omega(n) n^{-k /(k-1)} \leq p(n) \leq \frac{\log n+(k-1) \log \log n-\omega(n)}{k n}
$$

then a.e. $G_{n, p}$ has a component of order k.
(ii) Let $3 \leq r=r(n) \leq n^{1 / 3}$ and $0<p=p(n)<1$ be such that

$$
\binom{n}{r} p^{\binom{r}{2}} \rightarrow \infty \text { and }\binom{n}{r+1} p^{\binom{r+1}{2}} \rightarrow 0 .
$$

Prove that a.e. $G_{n, p}$ has clique number r.

2 Show that whp the hitting time of connectedness of a random graph process is precisely the hitting time of having no isolated vertices.

Deduce that if $\alpha: \mathbb{N} \rightarrow \mathbb{R}$ is a bounded function then for $p=p(n)=(\log n+\alpha(n)) / n$ we have

$$
\mathbb{P}\left(G_{n, p} \text { is connected }\right) /\left(1-e^{-e^{-\alpha}}\right) \rightarrow 1
$$

3 (i) Let Δ be a fixed natural number and, for each $n \geq 2$, let $\mathbf{d}=\left(d_{i}\right)_{1}^{n}$ be a sequence of integers such that $\Delta \geqslant d_{1} \geqslant d_{2} \geqslant \ldots \geqslant d_{n} \geqslant 1$, the sum $\sum_{i=1}^{n} d_{i}=2 m$ is even and $2 m-n \rightarrow \infty$. Also, for each $n \geq 2$, let G_{0} be a graph of maximal degree at most Δ with vertex set $V=[n]$.

Denote by $\mathcal{L}\left(\mathbf{d} ; G_{0}\right)$ the set of graphs with vertex set V which do not share an edge with G_{0} and whose degree sequence is exactly $\left(d_{i}\right)_{1}^{n}: d(i)=d_{i}, i=1, \ldots, n$. Sketch a proof of the fact that, as $n \rightarrow \infty$,

$$
\left|\mathcal{L}\left(\mathbf{d} ; G_{0}\right)\right| \sim e^{-\lambda / 2-\lambda^{2} / 4-\mu}(2 m)_{m} /\left(2^{m} \prod_{i=1}^{n} d_{i}!\right)
$$

where

$$
\lambda=\frac{1}{m} \sum_{i=1}^{n}\binom{d_{i}}{2} \text { and } \quad \mu=\frac{1}{2 m} \sum_{i j \in E\left(G_{0}\right)} d_{i} d_{j}
$$

(ii) Show that, for $\ell, r \geq 3$ fixed and $r n$ even, the expected number of ℓ-cycles in a random r-regular graph $G_{n, r-\mathrm{reg}}$ tends to $(r-1)^{\ell} / 2 \ell$ as $n \rightarrow \infty$.

4 (i) Let $C(n, n+\ell)$ be the number of connected graphs on [n] with $n+\ell$ edges. Prove that

$$
C(n, n)=\frac{1}{2}(n-1)!\sum_{j=0}^{n-3} \frac{n^{j}}{j!} .
$$

(ii) By making use of the 2-core and kernel of a connected graph of order n and size $n+1$, prove that

$$
c_{1} n^{n+1} \leq C(n, n+1) \leq c_{2} n^{n+1}
$$

for some positive constants c_{1}, c_{2} and all $n \geq 3$.

