MATHEMATICAL TRIPOS Part III

Tuesday 5 June 2007 1.30 to 3.30

PAPER 14

RAMSEY THEORY

Attempt **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1

(i) Using Ramsey's theorem, show that, whenever \mathbb{N} is finitely coloured, there exist $x_1 < x_2 < x_3 < \ldots$ such that the set $\{x_i + x_j : i \neq j\}$ is monochromatic.

[No form of Hindman's theorem may be assumed.]

(ii) Show that whenever \mathbb{N} is finitely coloured, there exist $x_1 < x_2 < x_3 < \ldots$ such that the set $\{x_i + 2x_j : i < j\}$ is monochromatic.

(iii) Show that it is *not* true that, whenever \mathbb{N} is finitely coloured, there exist $x_1 < x_2 < x_3 < \ldots$ such that the set $\{x_i + 2x_j : i \neq j\}$ is monochromatic.

(iv) Deduce from (iii) that there is no ultrafilter on \mathbb{N} , each member of which contains a set of the form $\{x_i + 2x_j : i \neq j\}$ (where $x_1 < x_2 < x_3 < \ldots$).

$\mathbf{2}$

State and prove van der Waerden's theorem. Deduce that, if a_1, \ldots, a_n are non-zero rationals, then the matrix (a_1, \ldots, a_n) is partition regular if and only if some (non-empty) subset of the a_i has sum zero.

[No form of Rado's theorem may be assumed without proof.]

3

What is an *ultrafilter* on \mathbb{N} ? Prove that there exists a non-principal ultrafilter on \mathbb{N} . Define the topological space $\beta \mathbb{N}$, and prove that it is compact and Hausdorff.

State Hindman's theorem, and show how to deduce it from the existence of an idempotent for + on $\beta \mathbb{N}$. (You are not required to prove that an idempotent exists. You may assume simple properties of ultrafilters, their quantifiers, and the operation + on $\beta \mathbb{N}$).

Deduce from Hindman's theorem the following statement: whenever \mathbb{N} is finitely coloured, there exist $x_1 < x_2 < x_3 < \ldots$ such that $FS(x_1, x_2, x_3, \ldots)$ is monochromatic and also x_i divides x_{i+1} for all i.

 $\mathbf{4}$

What does it mean to say that a subset of $\mathbb{N}^{(\omega)}$ is *Ramsey*? Give an example of a set that is not Ramsey. Prove that every τ -open set is Ramsey.

Find, with justification, examples of each of the following:

(i) a set that is *-open but not τ -open,

(ii) a set that is τ -nowhere-dense but not *-nowhere-dense,

(iii) a set that is *-nowhere-dense but not τ -nowhere-dense.

END OF PAPER